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Abstract 

Optimal decision-making requires organisms to adaptively adjust its sensitivity to new information. While 
numerous studies demonstrate that humans can adaptively weight task-relevant information based on the 
stochasticity and volatility of the environment, less is known about the influence of task-irrelevant factors on 
choice behavior. Here, we used computational modeling and EEG - as a brain measure with high temporal 
resolution - to better understand mechanisms responsible for the influence of task-irrelevant variability in 
reward magnitude and feedback salience on probabilistic learning. Specifically, we investigated learning 
behavior in a variant of a probabilistic reversal learning task with different levels of noise, that introduced 
two types of task-irrelevant events: pay-out magnitudes were varied randomly and, occasionally, feedback 
presentation was enhanced by visual surprise. We found that participants’ learning performance was biased 
by distinct effects of these task-irrelevant factors. On the computational level, we show that both factors 
modulated trial-by-trial learning rate dynamics. In the EEG, these learning rate dynamics were reflected in a 
feedback-locked centroparietal positivity that also predicted behavioral adaptations. These results were 
replicated in an independent sample using a version of the task with reduced levels of noise. Interestingly, 
higher sensitivity to task-irrelevant factors was only negatively related to overall task performance in the task 
with high level of noise. Collectively, these data help to clarify the impact of task-irrelevant factors on 
probabilistic learning and suggest that these factors have a counter-normative influence on trial-by-trial 
learning rate dynamics. 
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1 Introduction 

Optimal decision-making requires organisms to adaptively adjust its sensitivity to incoming information. In 
environments with changepoints and noise, optimal learning requires amplifying the influence of surprising 
information during change and minimizing it during stable phases. On a computational level, one class of 
models suggest that this weighting is achieved via dynamic learning rate adjustments according to the 
statistical content of new information1,9. Effects of adaptive learning rates on optimal behavior in volatile 
environments have been studied in AI, autonomous systems and robotics (also called “dry”) reinforcement 
learning (RL) literature.2,4 In the wet RL literature, numerous studies demonstrate that humans adaptively 
integrate new information into their beliefs by considering the stochasticity and volatility of the environment 
1,9. While the exact neural implementation of dynamic learning rate adjustments is yet to be established, there 
is research highlighting the importance of the locus coeruleus/norepinephrine system in facilitating adaptive 
learning rate adjustments 11,12. Moreover, several studies on EEG correlates of learning suggest that a late, 
feedback-locked centroparietal positivity referred to as the P300, tracks learning rate adjustments 3,10.  
Importantly, in complex environments additional factors can influence learning, some of which even might 
be irrelevant for upcoming decisions but difficult to ignore. Indeed, there is evidence, that task-irrelevant 
information such as randomly varying outcome magnitudes or visual surprise are tied to learning and thus 
bias future outcome expectations 6,7. Interestingly, the problem of learning in the presence of distractors has 
also been studied in the dry RL literature.8 Yet, the neuro-computational mechanisms underlying these 
learning biases are not fully understood. 
Here, we used EEG as a brain measure with high temporal resolution and computational modeling to better 
understand mechanisms responsible for the influence of task-irrelevant variability in reward magnitude and 
feedback salience on probabilistic learning. Participants (n=28) performed a probabilistic reversal learning 
task with different levels of noise. On each trial, subjects made a choice to either gamble or avoid gambling 
on a probabilistic outcome, in response to a stimulus presented in the middle of the screen (see Figure 1A). 
We introduced two types of task-irrelevant events: pay-out magnitudes were varied randomly and, 
occasionally, feedback presentation was enhanced by visual surprise. Both events were completely 
decorrelated from trial types and outcomes. We hypothesized that participants are unable to ignore these 
task-irrelevant factors despite explicit knowledge of their irrelevance for task performance and tested this 
hypothesis by investigating the effect of task-irrelevant factors on trial-by-trial learning rate dynamics. As 
predicted, we found that task-irrelevant factors biased learning on a given trial and that stronger biases were 
associated with worse task performance. Moreover, our results revealed that the P300 relates to learning rate 
dynamics and predicts behavior adaptations. These results were replicated in an independent sample (n=19), 
which also demonstrated that the negative effect of learning biases on task performance depend on the level 
of noise in the environment. 
Part of this work has been published in Kirschner et al., (2022)6, which presents the EEG correlates of task-
irrelevant factors in detail. The dynamic learning rate model, the EEG correlates of the learning rate, and the 
replication study are new contributions. The code of the RL models can be accessed here: 
https://github.com/HansKirschner/SaLe_Model 

2 Results 

In the task, to maximize financial earnings, participants had to learn the reward probabilities of three stimuli. 
On each trial, they could gamble on a stimulus and win or lose 10 or 80 points (translating to €0.10/€0.80) or 
choose to avoid gambling and observe what would have happened, without any financial consequences. 
During the task, reward probabilities of the stimuli could change unexpectedly. Moreover, we introduced 
two task- irrelevant factors a) visual surprise —on 20% of trials, the feedback background briefly flashed 
green (positive) or red (negative) instead of the standard black (Figure 1B); and (b) random payout 
magnitudes—on 50% of trials, outcomes involved either 10 or 80 points (Figure 1C). Participants’ choices 
largely reflected the stimuli's reward probabilities, indicating successful task learning. (Figure 2A). In a first 
analysis, we aimed to determine whether both types of task irrelevant factors had an effect on participants’ 
behavior. We found that both types of task-irrelevant events prolonged RTs on subsequent trials (βpost visual surprise 
= 0.04, 95% credible interval = [0.030, 0.068], ∆RT = ∼23 ms; βpost magnitude = 0.019, credible interval = [0.006, 0.031], 
∆RT = ∼12 ms). Moreover, the reward magnitudes manipulation affected participants’ choice probabilities. 
Specifically, participants were more likely to gamble on a stimulus after receiving a high vs. a low positive 
reward. Vice versa, they were more likely pass gambling on a stimulus after high vs. low losses. (βpost outcome x 

magnitude= -0.65 95% credible interval = [0.447, -0.847]; see Figure 2B). 



Having established that both task-irrelevant factors influenced participants’ behavior, we next sought to parse 
out the computational mechanisms of this observation. We began by fitting an ideal observer model for 
inference in the presence of changepoints1,5 to the task environment. This approach allowed us to first derive 
a normative learning rate free of any contamination by task-irrelevant factors (Figure 1E). Next, to capture 
trial-to-trial dynamics of subjective probability assessments, we fit the choice behavior from each participant 
with a reinforcement learning (RL) model that incrementally learned the probability of reward from feedback. 
The model updated expected reward probabilities for each trial with a dynamic learning rate. The model 
included a baseline coefficient capturing the average rate of learning as well as coefficients that allowed the 
learning rate to increase or decrease according to three factors: trial-to-trial learning rate from the ideal 
observer model, reward magnitude, and visual surprise (the latter two reflecting possible counter-normative 
influences on learning rate). Moreover, the model considered that the expected reward probability on a given 
trial was influenced by learned reward probabilities, along with a parameter capturing fixed biases toward 
gambling irrespective of the expected probability of reward. Coefficients that described the effects of ideal 
learning rate and reward magnitude on learning rate were positive across participants, while the effect of 
visual surprise was centered around zero across participants (Figure 2C; ideal learning rate: two-tailed t(27) = 
3.17, p = 0.003, d = 0.61, 95% confidence interval = [0.11, 0.49]; reward magnitude: t(27) = 4.67, p >.001, d = 0.89, 
confidence interval = [0.35 ,0.89]; visual surprise: t(27) = -1.05, p = 0.30, d = -0.20, confidence interval = [-0.27, 
0.08]). In other words, participants were more responsive to feedback that was provided during a period with 
a high normative learning rate and with high reward magnitudes. Thus, the ideal learning rate and reward 
magnitudes scaled the extent to which reward prediction errors (RPEs) were used to adjust subsequent 
behavior. To better understand how learning biases relate to overall task performance, we examined how 
performance in the task related to model parameters from our fits. To do so, we regressed task performance 
onto an explanatory matrix containing our model parameter estimates (Figure 2D). The results of this analysis 
revealed that counter-normative influences on learning were negatively predicting overall task performance 
(βreward magnitude = -.624, credible interval = [-1.008, -.220]); (βvisual surprise = -.749, credible interval = [-1.126, -.359]). 

Figure 1. Task and ideal observer model. (A) Schematic of the 
probabilistic reversal learning task. On each trial, a fixation dot 
and choice options were presented for 300 –700 ms. Next, the 
stimulus was presented for up to 1700 ms. During this time 
participants had to decide, if they wanted to gamble on the 
stimulus or not. After subject’s decisions their choice was 
highlighted for 350 ms. Finally, depending on participants 
choice, either factual or counterfactual feedback was presented 
for 750 ms. (B) On 20% of the trials, the color of the feedback 
background changed from black to a feedback-matching color 
(i.e. red or green), introducing task irrelevant visual surprise. 
(C) A second manipulation in the task focused on the reward 
magnitudes. Here, magnitudes randomly varied between 10 
and 80 points. (D) Plot showing model predictions. Reward 
probabilities reversed occasionally to require learning (solid 
black line). Bold vertical black lines indicate a change of stimuli 
and thin vertical black lines indicate reversals. Binary outcomes 
(black dots), which were governed by the underlying reward 
probabilities, were used by an ideal observer model for 
inference in the presence of changepoints1,5 (yellow line). (E) 
Plot showing the ideal learning rate derived from the ideal 
observer model. In this model the learning rate for a new 
observation is mathematically defined and depends on the 
uncertainty about the underlying (reward) distribution and the 
likelihood of a change-point. It is noteworthy that normative 
learning is typically larger after changepoints. (A-C) adopted 
from 6. Note that stimuli were sorted in D&E for ease of 
visualization but presented interleaved in the task. 

Next, we explored the counter-normative influence of reward magnitude on learning rate. Here, we split the 
sample via a median-spilt on the individual reward magnitude parameter estimates. This analysis revealed 
higher and less dynamic learning rates for participants with higher reward magnitude coefficients (Figure 
3A). To investigate the neural correlates of the learning rate, we regressed feedback-locked EEG data collected 



simultaneously with task performance onto the trial-by-trial learning rate derived from the RL model. 
Regression weights were aggregated across subjects to create a map of t-statistics (Figure 3B), and 
spatiotemporal clusters of electrode/timepoints exceeding a cluster-forming threshold were tested against a 
permutation distribution of cluster mass to spatially and temporally organized fluctuations in voltage that 
related to learning rate dynamics. This procedure yielded a large cluster of centroparietal positive coefficients 
spanning 320–750ms post feedback, matching the timing, direction and topography of the canonical P300 
response.	Next, we used multivariate pattern analysis on feedback locked EEG activity of the whole scalp and 
trained a support vector machine to predict behavioral switches (changes in choice behavior on the next 
encounter of stimuli with the same identity). Cluster-based permutation analyses revealed a large cluster of 
time points at which the decoding of future switches was significantly greater than chance level (Figure 3C). 
Projecting classifier weights onto EEG sensor space at the maximal individual decoding accuracy (mean ± 
s.e.m.; 503 ± 38.08ms) revealed a topographic match with the P300 which occurs in this time range (Figure 3C, 
inset). Finally, temporal generalization analyses demonstrate that the classifier predicting behavior switches 
generalizes within the P300 latency (Figure 3D). 

Figure 2. Task-irrelevant factors affect choice behavior and learning rates. (A) Modelled and choice behavior, stretched 
out for all stimuli. Note that in the task the different animal stimuli were presented in an intermixed and randomized 
fashion, but this visualization allows to see that participants’ choices followed the reward probabilities of the stimuli. 
Data plots are smoothed with a running average (+/- 2 trials). Ground truth corresponds to the reward probability of 
the respective stimuli (good: 80%; neutral: 50%; bad: 20%). Dashed black lines represent 95% confidence intervals derived 
from 1000 simulated agents with parameters that were best fit to participants in each group. (B) Raw value splits for the 
effect of previous reward magnitude and outcome on the choice probability on a given trial. (C) Mean maximum 
likelihood estimates and 95% confidence intervals of parameters affecting learning rate in the model (D) Regression 
coefficients and 95% credible intervals (points and lines; sorted by value) stipulating the contribution of each model 
parameter estimate to overall participants task performance (i.e., scored points in the task). * = significant difference. 

2.1 Replication of the main results in a follow-up experiment 

Our initial findings suggested that task-irrelevant variability in reward magnitude and, partly, feedback 
salience bias probabilistic learning. However, the relatively large proportion of neutral reward probabilities 
may have facilitated this bias, because of the increased relative uncertainty about the stimuli value. To address 
this issue, we conducted a follow-up experiment in an independent sample of healthy young adults (n = 19). 
In the new learning task, the reward probabilities for the three stimuli only varied between 20% and 80% 
reward probability. We replicated all effects of the initial study. The only difference that we observed, was 
that variability in learning bias was no longer related to overall task performance (βreward magnitude = -.231, credible 
interval = [-0.676, 0.241]; βvisual surprise = -.571, credible interval = [-1.332, 0.385]). 



Figure 3. Outcome-locked P300 reflects 
Learning rate dynamics predicts behavioral 
adaptations. (A) Learning rate around 
reversals for high and low learning bias based 
on median split on reward magnitude 
coefficients. (B) T-statistic map for clusters that 
survived multiple comparisons correction via 
permutation testing for learning rate contrast 
along with corresponding topoplots. (C) Mean 
accuracy of decoding of behavioral switches. 
Grey area indicates the cluster in which 
decoding accuracy significantly surpassed 
chance level after correction for multiple 
comparisons via permutation testing. 
Topoplot shows projected classifier weights 
onto EEG sensor space at the maximal 
individual decoding accuracy. (D) Temporal 
generalization of decoding performance. 
Contours indicate time point pairs where the 
generalization above chance after correction 
for multiple comparisons via permutation 
testing. 

3  Conclusion 

In this study, we combined computational modeling and EEG as a brain measure with high temporal 
resolution to better understand mechanisms responsible for the influence of task-irrelevant variability in 
reward magnitude and feedback salience on probabilistic learning in two independent samples. Collectively, 
these data demonstrate a counter-normative influence of reward magnitude on learning rates across 
participants. Moreover, counter-normative influences on learning are negatively predicting overall task 
performance depending on the level of probabilistic noise in the task. In the EEG, learning rate dynamics are 
reflected in a centroparietal positivity that also predicts behavioral adaptations. 
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