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Deficits in reward learning are core symptoms across many mental disorders. Recent work suggests that such learn
ing impairments arise by a diminished ability to use reward history to guide behaviour, but the neuro-computational 
mechanisms through which these impairments emerge remain unclear. Moreover, limited work has taken a trans
diagnostic approach to investigate whether the psychological and neural mechanisms that give rise to learning def
icits are shared across forms of psychopathology.
To provide insight into this issue, we explored probabilistic reward learning in patients diagnosed with major depres
sive disorder (n = 33) or schizophrenia (n = 24) and 33 matched healthy controls by combining computational model
ling and single-trial EEG regression. In our task, participants had to integrate the reward history of a stimulus to 
decide whether it is worthwhile to gamble on it. Adaptive learning in this task is achieved through dynamic learning 
rates that are maximal on the first encounters with a given stimulus and decay with increasing stimulus repetitions. 
Hence, over the course of learning, choice preferences would ideally stabilize and be less susceptible to misleading 
information.
We show evidence of reduced learning dynamics, whereby both patient groups demonstrated hypersensitive learn
ing (i.e. less decaying learning rates), rendering their choices more susceptible to misleading feedback. Moreover, 
there was a schizophrenia-specific approach bias and a depression-specific heightened sensitivity to disconfirma
tional feedback (factual losses and counterfactual wins). The inflexible learning in both patient groups was accom
panied by altered neural processing, including no tracking of expected values in either patient group.
Taken together, our results thus provide evidence that reduced trial-by-trial learning dynamics reflect a convergent 
deficit across depression and schizophrenia. Moreover, we identified disorder distinct learning deficits.
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Introduction
Cognitive dysfunction is at the core of many disorders and heavily 
affects quality of life.1 A wealth of studies have demonstrated its 
importance and attempted to discern the mechanisms that give 
rise to cognitive dysfunction in both patients diagnosed with 
schizophrenia2,3 and depression.4 Common to both patient groups 
are deficits in tasks that require learning.5,6 A better understanding 
of the unique and distinct psychological and neural mechanisms 
that give rise to learning impairments is pivotal to targeting them 
with interventions and necessitates parsing the learning process 
into a finer level of detail.

Recent work has highlighted the advantage of designing and 
analysing experiments within a computational framework to better 
characterize learning dysfunction. Specifically, it has been sug
gested that these patient groups have difficulties adaptively updat
ing the value of actions based on probabilistic feedback and in using 
these value representations to guide behaviour.5-8 Since multiple 
cognitive systems interact to support reward learning, it is difficult 
to separate the processes that contribute to reward learning deficits 
into finer levels of detail. A recent line of research demonstrated 
that reward learning depends on cooperative contributions of 
working memory and reinforcement learning.9-14 Here, the pre
frontal cortex is involved in using working memory to represent va
lues of prospective outcomes and test hypotheses, while the 
striatal dopamine system affords prediction error signalling and in
tegration of this over trials (i.e. reinforcement learning).15 In schizo
phrenia, it has been shown that reward learning impairments arise 
predominantly from working memory deficits9,11 and a reduced 
ability to take future consequences into account.16 Similarly, work
ing memory deficits have been shown in depression,17-19 and there 
is some evidence of increased discounting (i.e. forgetting) of previ
ous reward history in this patient group with increasing working 
memory load when compared to healthy controls.20,21 This may 
suggests that reward learning dysfunctions in depression are also 
linked to the interaction of reinforcement learning and working 
memory systems.

A separate line of research links reward learning deficits in de
pression and schizophrenia to maladaptive integration of new in
formation into beliefs about internal and external states.22 For 
example, it has been shown that patients with schizophrenia use 
an ‘all-or-none’ belief updating strategy, rendering their learning 
less flexible and precise.23 Yet, the neural mechanism underlying 
these abnormalities remains unclear.

In the normative literature, a uniform sequence of event-related 
brain potentials (ERPs) has been associated with reward processing: 
an early frontocentral negativity (FRN), succeeded by a frontocen
tral positivity (P3a), that is followed by a more sustained parietal 
positivity called P3b.24 The early ERP components FRN and P3a 
have been linked to coding of prediction errors and attentional or
ienting.25,26 The P3b likely reflects a signal that is interpreted by 
downstream processes to set the stage for future behaviour and 
belief updating.27-29 Interestingly, there are now multiple reports 

of relatively normal FRN in schizophrenia,30 while blunted P3b am
plitudes are well documented.31-34 This body of work suggests that 
reward information is processed initially but fails to fully impact 
subsequent behaviour updates in schizophrenia. The literature on 
depression is less consistent but also hints to blunted reward re
lated EEG activity.35,36 Critically, the literature remains unclear as 
to how these alterations relate to learning deficits.

Here, we combined computational modelling and EEG to pro
vide insight into this issue. We administered a simplified variant 
of an established probabilistic learning task29 to patients with 
schizophrenia and depression. In the task, participants must inte
grate the reward history of a stimulus to decide whether to gamble 
or avoid gambling on the respective stimulus. Adaptive learning in 
this task is achieved through dynamic learning rates that are max
imal on the first encounters with a given stimulus and decay with 
increasing stimulus repetitions. Hence, over the course of learning, 
the choice preferences would ideally stabilize and be less suscep
tible to misleading information. We used computational modelling 
to quantify variables involved in learning dynamics and single-trial 
regressions analyses to identify their EEG signatures. First, we con
firmed performance deficits in patients compared to matched 
healthy control participants. Second, we predicted that these defi
cits arise from reduced trial-to-trial learning dynamics. Finally, we 
hypothesized that these learning deficits would be reflected in al
tered neural dynamics. We found transdiagnostic deficits in learn
ing dynamics and blunted neural representations of expected 
rewards in both patient groups as well as disorder-specific decision 
biases. Specifically, we show evidence of reduced learning dynam
ics, whereby both patient groups demonstrated more hypersensi
tive learning (i.e. less decay in learning rates), rendering their 
choices more susceptible to misleading feedback. Moreover, there 
was a schizophrenia-specific approach bias and a depression- 
specific heightened sensitivity to disconfirmational feedback. 
Hypersensitive learning in both patient groups was accompanied 
by altered neural processing, including no tracking of expected va
lues in either patient group. Hence, we provide evidence of a bunted 
neural representation of reward expectation in patients. In line 
with previous research, we demonstrate that parietal EEG activity 
during later stages of feedback processing may reflect an adaptive 
cortical mechanism of stimulus value updating by integrating out
comes and learning rate. Interestingly, this mechanism seems to be 
preserved in a subgroup of both patient groups that show decaying 
learning rates.

Materials and methods
Participants

To determine learning and reward processing biases in depression 
and schizophrenia, patients diagnosed with major depressive 
disorder (MDD; n = 33), schizophrenia (n = 23) or schizoaffective dis
order (n = 2), collectively referred to as SZ, and 34 matched healthy

202 | BRAIN 2024: 147; 201–214                                                                                                                             H. Kirschner et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/147/1/201/7460176 by guest on 17 Septem

ber 2024

mailto:hans.kirschner@ovgu.de


controls (HCs; matched for age, gender and education) were re
cruited into this study, which took place in the Department 
of Psychiatry and Psychotherapy at the university hospital in 
Magdeburg. All participants were of central European origin. The ma
jority of MDD patients (27 of 31; Supplementary Table 1) had a recur
rent depression diagnosis with at least two distinct depressive 
episodes according to DSM-IV and were all currently treated for their 
depressive symptomatology. The mean Beck Depression Inventory 
(BDI) and Hamilton Rating Scale for Depression (HAMD) scores 
(Table 1) of the MDD group can be regarded as ‘mild to moderate se
verity’ depressive symptomatology. All participants gave informed 
consent according to the Declaration of Helsinki, and the research 
was approved by the ethics committee of the medical faculty of the 
Otto-von-Guericke University Magdeburg. All participants received 
€15 for their participation in the experiment, independent of their 
performance in the probabilistic learning task. Using the proportion 
of missed trials, we tested for non-compliant participants using 
Grubb’s test for outlier detection with a one-sided alpha of 0.01 [cut- 
off > 10%, found in three subjects (HC n = 1; MDD n = 1; SZ n = 1)]. 
Moreover, one patient in the MDD group was on lorazepam during 
the testing session and had to be excluded.

Clinical and cognitive assessment

Patients were clinically and pharmacologically stable (no change in 
drug or dose for at least 2 weeks). All SZ patients were on antipsychot
ic medications and almost all MDD patients took antidepressants 
(Supplementary Table 1). The diagnosis of the respective patient 
groups and the absence of a lifetime diagnosis of a psychosis or cur
rent mental disorder in the healthy control group was established 
based on the DSM-IV using the Mini-International Neuropsychiatric 
Interview (MINI42; see Supplementary Table 1 for details of diagno
ses). Additional exclusion criteria included: (i) DSM-IV diagnosis of 
substance abuse or dependence in the past 6 months for all partici
pants; (ii) DSM-IV diagnosis of current major depressive disorder 
for SZ (note that two SZ patients had a schizoaffective disorder diag
noses); (iii) past head injury with documented neurological sequelae 

and/or loss of consciousness for all participants; and (iv) benzodi
azepine medication within the last 7 days for all participants. All 
groups were assessed with the German version of BDI-II,39 the 
Global Assessment of Functioning (GAF)38 and a computer-supported 
test series to assess attention (TAP; subtests allertness, working 
memory and divided attention).37 MDD patients were additionally as
sessed with the German version of the Hamilton Depression Scale.40

SZ patients were further assessed with the Positive and Negative 
Syndrome Scale (PANSS) for schizophrenia.41 Demographic, clinical 
and cognitive measures of the final sample are listed in Table 1.

Probabilistic learning task

Participants performed a variant of an established learning task.29

On each trial, participants decided either to gamble or avoid gam
bling on a centrally presented stimulus (Fig. 1A). Gambling on a 
stimulus resulted in winning or losing points depending on the re
ward probability of the respective stimuli. If subjects decided not to 
gamble, they avoided any consequences, but were still able to ob
serve what would have happened if they had gambled by receiving 
counterfactual feedback.

The main task consisted of eight blocks in which two stimuli 
were presented in pseudorandomized order with up to five repeti
tions of the same stimulus. This resulted in a total of 16 stimuli. 
Each stimulus was presented at least 20 times and not more than 
23 times, resulting in a total of 360 trials. Eight stimuli had a high 
chance of winning (70% or 80%) and eight stimuli had a low change 
of winning (20% or 30%). The trial structure is depicted in Fig. 1A and 
additional information on the task structure can be found in 
Supplementary Fig. 1.

Reinforcement learning model fitting

To parse out factors influencing choices, we fit variants of re
inforcement learning models to participants choice behaviour 
using a constrained search algorithm (fmincon in MATLAB 
2021b), which computed a set of parameters that maximized the

Table 1 Demographic, cognitive, and clinical measures of controls and patients included in the final analyses

Measure HC (n = 33), mean (SD) MDD (n = 31), mean (SD) SZ (n = 24), mean (SD) Inferential statistic

Demographic
Age 34.81 (10.83) 33.85 (8.68) 35.00 (9.17) F = 0.12
Gender 17 F; 16 M 18 F; 13 M 7 F; 17 M –
Educationa 2.52 (0.62) 2.53 (0.51) 2.00 (0.83)b,c F = 5.70*

Cognitive
TAP-Alertness 25.45 (14.34) 22.25 (14.06) 23.45 (17.56) F = 0.37
TAP-Working memory 51.00 (27.63) 47.37 (29.76)c 30.50 (23.83)b,c F = 3.93*
TAP-Divided attention 47.81 (24.51) 45.41 (25.68) 34.58 (30.80) F = 1.85

Clinical
GAF 93.76 (3.49) 67.41 (11.38)b 63.46 (12.53)b F = 88.74**
BDI-II 2.18 (2.87) 24.81 (10.17)b,c 16.42 (10.13)b,c F = 62.59**
HAMD – 15.18 (6.77) – –
PANSS

Positive subscale – – 10.50 (4.68) –
Negative subscale – – 13.88 (5.08) –
General subscale – – 24.79 (4.71) –

BDI-II = Beck depressions inventar-revision II39; F = female; GAF = Global Assessment of Functioning38; HAMD = Hamilton Rating Scale for Depression40; HC = healthy controls; 

M = male; MDD = patients diagnosed with major depression; PANSS = Positive and Negative Syndrome Scale for Schizophrenia41; SD = standard deviation; SZ = patients 

diagnosed with schizophrenia; TAP = computer-supported test series to assess attention.37

aRanging from 1 (primary education) to 3 (higher education). 
bSignificant difference to HC. 
cSignificant difference between patients. 

*P < 0.01, **P < 0.001.
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total log posterior probability of choice behaviour. Here, the base 
model was a standard Q-learning model with two parameters: (i) 
a constant learning rate (α); and (ii) a temperature parameter (β) of 
the softmax function. Specifically, on each trial (t) the expected va
lue of a stimulus (Q) was calculated as follows:

Qt+1 = Qt + a × dt with dt = Rt − Qt (1) 

Q-values represent the expected value of an action at trial t; α re
flects the learning rate; and δt represents the prediction error, with 
Rt being the reward magnitude of that trial. The stimulus values 
were converted into action probabilities according to a softmax rule:

Pc,t =
1

1 + exp −
0.5 + Qt

b

􏼒 􏼓 (2) 

Next, we fit additional reinforcement models by complementing the 
base model with additional parameters that were informed by de
scriptive analyses on the choice behaviour (Supplementary 
material). Five such parameters were added to the base model: (i) 
a parameter (Ѡ) that allowed free scaling of the initial expected va
lue; (ii) a perseveration parameter (λ), that added a bonus onto the 
option value of the most recently chosen stimuli to account for po
tential tendencies to repeat choices; (iii) different learning rates for 
confirmational (factual wins and counterfactual losses) and discon
firmational (factual losses and counterfactual wins) feedback; and 
(iv) a learning rate decay function, whereby a decay scaling factor 
(η) allowed scaling of the learning rate decay in the respective block. 
Here, the learning rate on a given trial was given by:

at =
h

Tbl
+ (1 − h) × a1 (3) 

where αt is the learning rate on a given trial, Tbl is the block trial num
ber of the stimulus (i.e. how often has the respective stimuli been 
seen in the block) and α1 is the starting learning rate on the first en
counter of the stimuli.

Model comparison and validation

For model comparison, we first computed the Bayesian information 
criterion (BIC) for each participant according to:

BIC = 􏽢LL −
k

2
ln(T) (4) 

Where 􏽢LL is the log-likelihood value at the best fitting parameter 
settings, k is the number of free parameters and T is the number 
of trials.43 Next, we computed protected exceedance probabilities, 
which gives the probability that one model was more likely than 
any other model of the model space.44 To test whether we could dis
tinguish between our models, we conducted a model-recovery 
study (Supplementary material). To validate the best fitting model, 
we tested whether we could reliably estimate our free parameters 
within a parameter and model recovery analyses. Moreover, we 
conducted post-predictive checks to confirm that the best fitting 
model captured the key aspects of the choice behaviour. These add
itional results are presented in the Supplementary material.

EEG measurements and analyses

EEG was recorded at 500 Hz from 64 channels with CPz as reference 
channel arranged in the extended 10–20 system using BrainAmp 

amplifiers (Brain Products). Pre-processing of the EEG data was car
ried out with MATLAB 2021b (The MathWorks, Natick, MA) and the 
EEGlab 13 toolbox45 with custom routines as described previously.27

Pre-processing steps included: (i) filtering (0.3 Hz high- and 40 Hz 
low-pass filters); (ii) removal and interpolation of bad channels, 
rejected channels [mean (standard deviation, SD)]: 4.47 (3.51); (iii) 
re-referencing to a common average; (iv) segmentation into 
stimulus-locked epochs spanning from 1000 ms pre-stimulus to 
4000 ms post-stimulus; (v) automatic epoch rejection, as described 
by Kirschner et al.,46 rejected epochs [mean (SD)]: 19.55 (9.61); and 
(vi) removal of blink and eye-movement components, rejected 
components [mean (SD): 7.92 (3.05)], using adaptive mixture inde
pendent component analysis (AMICA).47

Following baseline correction (−250 to −50 ms relative to feedback 
onset), epochs spanning −400 to 1000 ms around feedback presenta
tion were then used for multiple robust single-trial regression ana
lyses.29 Specifically, for each feedback condition (factual versus 
counterfactual), we designed two EEG regression models and re
gressed the single-trial model predictions onto the EEG signal. 
General linear model 1 (GLM1) included the RPE (δt); GLM2 included 
the RPE components48 outcome (Rt) and expected value (Q). The 
groups were comparable in terms of the number of trials these EEG 
analyses were conducted on [factual trials, HC, mean (SD): 189.93 
(24.90); MDD: 183.96 (38.68); SZ: 203.37 (44.34); F(2,85) = 2.02, P = 0.139; 
counterfactual trials, HC, mean (SD): 138.12 (23.60); MDD: 139.03 
(35.51); SZ: 120.95 (46.43); F(2,85) = 2.19, P = 0.118]. In a third GLM we in
vestigated the interplay between surprise and learning across all 
trials. Based on previous research we focused on the P3b in this 
GLM, as this neural correlate is assumed to be related to behavioural 
adjustments.27-29 Here, we included the absolute RPE and the learning 
rate (α1) in the EEG regression model. All models included trial number 
as a regressor of no interest, to account for unspecific task effects like 
fatigue. Statistics were run on averaged regression weights around 
the peak (time and location, i.e. electrode) of the respective ERP com
ponent (FRN: ±20 ms around peak; P3a: ±40 ms around peak; P3b: 
mean value between 450 and 550 ms). For the extraction of regression 
weights of GLM3, we averaged over the time window in which the co
variation between the regressor and EEG signal was significant after 
correction for multiple comparison through false discovery rate 
(FDR).49 We chose these broader time windows to investigate whether 
shifts in EEG activity are associated with behaviour.

Associations

To explore the associations between model-parameters, their EEG 
correlates, cognitive variables and symptoms, we calculated 
zero-order Pearson correlations.

Results
Behaviour

In general, participants learned the task well. This was reflected in 
their choice behaviour that largely followed the reward probabil
ities of the stimuli across the groups (Fig. 1C). Importantly, how
ever, we found a decreased task performance in patients [Fig. 1B; 
F(2,85) = 3.8, P = 0.026]. Follow-up analyses revealed that both 
MDD [HC versus MDD, mean (SD): 386.36 (38.97) versus 259.68 
(47.88); t(62) = 2.06, P = 0.04, d = 0.52] and SZ [HC versus SZ, mean 
(SD): 386.36 (38.97) versus 217.92 (49.88); t(55) = 2.69, P = 0.009, d =  
0.74] participants earned fewer points in the task than HCs. There 
was no difference between the patient groups in terms of overall
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Figure 1 Experimental design, observed behaviour and model predictions. (A) Time course of the task. Each trial began with the presentation of a ran
dom jitter between 300 and 700 ms. Hereafter, a fixation cross was presented together with two response options (choose, green tick mark; or avoid, red 
no-parking sign). The response options’ sides were counterbalanced across participants and remained in place until the feedback was presented.                                                                                                                                                                                                                                                 

(Continued)
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performance [mean (SD): 217.92 (49.88) versus 259.68 (47.88); t(53) =  
−0.60, P = 0.55, d = 0.17]. Moreover, participants committed only a 
few misses, and the groups were fairly comparable in terms of 
the number missed trials [HC, mean (SD): 2.66 (3.46); MDD: 2.06 
(3.16); SZ: 4.04 (4.51); F(2,85) = 2.00, P = 0.141].

Learning behaviour

The goal of our study was to understand how factors that govern 
learning might be altered in depression and schizophrenia and to 
identify possible neural correlates of these deviations. Behavioural 
analyses of the choice data (Fig. 1D–F and see the Supplementary 
material for more details) indicate that participants integrated feed
back over time to gamble effectively. Yet, the accuracy of choices 
was heavily influenced by misleading probabilistic feedback and 
stimulus values (good versus bad, whereby subjects showed pro
blems in avoiding gambling on bad stimuli) at the beginning of 
learning in each block. The influence of stimulus value and mislead
ing feedback faded out as learning increased (interaction between 
reward history and stimulus value/misleading feedback; Fig. 1D 
and E). Critically, this effect was reduced in both patient groups (in
dexed by a weaker interaction between reward history and mislead
ing feedback, Fig. 1F). Together, these analyses provide a hint that 
participants may be changing their learning rate as a function of 
trials after transitions.

Reduced learning rate decay renders patient choices more 
susceptible to misleading information

To understand these trial-to-trial learning dynamics, we con
structed a nested model set built from reinforcement learning mod
els (Fig. 2A) that included the following features: (i) a temperature 
parameter of the softmax function used to convert trial expected 
values to action probabilities (β; higher values indicate increased 
choice stochasticity); (ii) a learning rate (α) that could either be fixed 
or change as a function of trials after transitions (scaled by the par
ameter η, whereby values close to zero indicate fixed learning rates 
and values close to 1 indicate strong decay in the learning rate); 
(iii) different learning from confirmational and disconfirmational 
feedback; (iv) a perseveration parameter to account for potential 
tendencies to repeat choices irrespective of feedback (λ); and 

(v) an approach parameter to account for potential tendencies to 
initially prefer gambling on a stimulus (Ѡ, higher values indicate 
higher initial stimuli values). The winning model (as measured by 
lowest BIC and achieving protected exceedance probabilities of 
92.44%) was one that included all features (Fig. 2B and C and see 
Supplementary Fig. 9 for more information of the distribution of in
dividual fits across the model space). Sufficiency of the model was 
evaluated through posterior predictive checks that matched behav
ioural data on various summary measures (for posterior predictive 
checks see Supplementary Fig. 2; additional model validation ana
lyses are presented in Supplementary Fig. 5). We did not find evi
dence for differences in model fit between the groups [F(2,85) =  
0.02, P = 0.988]. The winning model facilitated flexible behavioural 
adjustments through dynamic learning rates that were maximal 
on the first trial with a given stimulus and decayed with increasing 
stimulus repetitions (Fig. 2E). In other words, RPEs influenced be
haviour updates more strongly at the beginning of learning when 
the normative uncertainty is high (in line with the prediction 
from a Bayesian ideal observer model50,51; Supplementary Fig. 5). 
To validate this interpretation of parameter differences, we con
ducted an exploratory descriptive analysis and found that partici
pants whose fits indicated less decay in learning rate made more 
choice switches during the last five trials of each block (r = −0.46, 
P < 0.001; Supplementary Fig. 4), when preferences would have 
ideally stabilized. Critically, learning rate decays were reduced in 
both patient groups, which was reflected in lower η in both MDD 
[η MDD: 0.15 (SD: 0.03) versus HC: 0.25 (SD: 0.04); t(63) = −1.88, P =  
0.03, d = 0.48] and SZ [η SZ: 0.15 (SD: 0.04); t(55) = −1.64, P = 0.04, 
d = 0.45]. Consistent with this, both patient groups tended to show 
more choice switches during the last five trials within a block 
[switch probability, MDD: 0.36 (SD: 0.02) versus HC: 0.30 (SD: 0.02); 
t(63) = 1.51, P = 0.0826, d = 0.36; SZ: 0.39 (SD: 0.04); t(55) = 1.89, P =  
0.06, d = 0.52]. Moreover, increased switch probability in patients 
tended to be associated with reduced learning rate decay (MDD: 
r = −0.52, P = 0.002, n = 31; SZ: r = −0.33, P = 0.06, n = 24; 
Supplementary Fig. 4). Interestingly, there were no group differ
ences for overall switches [number of overall switches, HC mean 
(SD): 109.84 (40.27); MDD mean (SD): 110.06 (40.27); SZ mean (SD): 
114.45 (54.92); F(2,85) = 0.08, P = 0.925] or for switches after disconfir
mational feedback [i.e. factual loss or counterfactual win; number

Figure 1 Continued 
After the fixation cross, the stimulus was shown centrally until the participant responded or for a maximum duration of 2500 ms. If participants failed 
to respond in time, they were instructed to speed up. Thereafter, participants’ choices were confirmed by a white rectangle surrounding the chosen 
option for 350 ms. Finally, the outcome was presented for 750 ms. If subjects chose to gamble on the presented stimuli, they received either a green 
smiling face and a reward of 10 points or a red frowning face and a loss of 10 points. When subjects avoided a symbol, they received the same feedback 
but in a slightly paler colour, and the points that could have been received were crossed out to indicate that the feedback was fictive and had no effect 
on the total score. (B) Total points earned in the task for each group. *Significant difference. Boxes = interquartile range (IQR), horizontal line = median, 
circle = mean, whiskers = 1.5 IQR. (C) Modelled and choice behaviour of the participants in the task stretched out for all stimuli. Note that in the task the 
different animal stimuli were presented in an intermixed and randomized fashion, but this visualization allows the reader to see that participants’ 
choices followed the reward probabilities of the stimuli. Data plots were smoothed with a running average (±2 trials). Ground truth represents the re
ward probability of the respective stimuli (good: 70/80%; bad: 20/30%). Dashed black lines represent 95% confidence intervals derived from 1000 simu
lated agents with parameters that were best fit to participants in each group. Model predictions appear to capture the transitions in choice behaviour 
well. (D–F) Single-trial logistic regression on accuracy (binary variable reflecting whether a participant displayed stimulus-appropriate behaviour on 
each trial). The regression model included predictors as follows: (i) stimulus value (good versus bad); (ii) previous misleading feedback (i.e. whether 
the last feedback on the respective stimulus was in line with its reward probability or not); (iii) log-scaled delay (number of trials since the current 
stimulus was last seen—a simple marker of working memory demand); (iv) reward history (cumulated correct choices for the respective stimulus with
in each learning block); and (v) trial number (as a regressor of no interest controlling for unspecific task factors like fatigue). Across participants, each of 
these factors had systematic effects on accuracy, with participants more accurate for high value stimuli and after experiencing cumulative rewards but 
less accurate after seeing misleading feedback. E depicts raw value splits for the predictors allowing visualization of interaction effects. The influence 
of stimulus value and misleading feedback faded out as learning increased (interaction between reward history and stimulus value/misleading feed
back). (F) Critically, this effect was reduced in both patient groups. A full description of these results can be found in the Supplementary material. D and 
F display average within participant t-values; P-values were derived from t-tests of individual regression weights against zero. *Significant differences 
after Bonferroni correction. ΔHC = significant group difference; HC = healthy controls; MDD = major depressive disorder; RL = reward learning; SZ =  
schizophrenia.
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Figure 2 Reinforcement learning modelling, parameter distribution and mapping onto task performance. (A) Overview of the candidate model prop
erties. (B) Total Bayesian information criterion (BIC) scores over participants of each candidate model. Higher values indicate a better fit of the models to 
the behavioural data. The results indicate that the full Model 6 provides the best description of participants’ choice data. (C) Protected exceedance prob
abilities (pEP) similarly favoured Model 6. (D) Comparison of parameter estimates from Model 6 across groups. Asterisks indicate significant group dif
ference for the respective parameter. (E) Learning rate (LR) trajectories within each block derived from the learning rate decay function. The data 
indicate less decay in the learning rate for both patient groups. Moreover, across groups there was a heightened sensitivity to disconfirmational feed
back (factual losses/counterfactual wins). While healthy controls (HCs) approached the normative learning rate (black line; derived from an ideal ob
server model; Supplementary material) during confirmational learning, all groups deviated from normative learning during disconfirmational 
learning. Right: Scatter plots depict correlations between learning biases and task performance for (F) major depressive disorder (MDD) and (G) schizo
phrenia (SZ). (H–K) Regression coefficients and 95% confidence intervals (points and lines, sorted by value) stipulating the contribution of each model 
parameter estimate to overall task performance. Here, we regressed model parameters onto task performance. (H) Data aggregated over groups. (I–K) 
Data separated by groups. The parameter governing the learning rate decay (η) made a significant positive contribution to overall task performance 
both across all groups and within each group. Both in HCs and MDD, increased choice stochasticity (β) was associated with worse performance. 
Across groups and in SZ patients, increased approach bias (Ѡ) made a significant negative contribution to task performance. Note, the overall fit of 
the general linear models as measured by R2

adj was comparable across groups (HC: R2
adj = 0.71; MDD R2

adj = 0.69; SZ R2
adj = 0.74). λ = perseveration parameter 

to account for potential tendencies to repeat choices irrespective of feedback; conf = confirmational feedback; disconf = disconfirmational feedback. 
*P < 0.05; **P < 0.01.
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of switches, HC mean (SD): 47.45 (23.31); MDD mean (SD): 52.06 
(26.18); SZ mean (SD): 53.58 (29.57); F(2,85) = 0.44, P = 0.644].

The model fits provided some additional results of interest. 
Across groups, we saw different learning dynamics for confirma
tional versus disconfirmational feedback, whereby higher learning 
rates were observed for disconfirmational feedback (Fig. 2D and E). 
This indicated that participants are more affected by disadvanta
geous outcomes (i.e. factual losses and counterfactual wins). This 
effect was particularly pronounced in MDD [αdisconf MDD: 0.39 (SD: 
0.07) versus HC: 0.26 (SD: 0.06); t(63) = 1.34, P = 0.05, d = 0.34; there 
was no difference between MDD and SZ, or HC and SZ, all P > 0.5]. 
While the level of perseveration was comparable between the 
groups (all P > 0.5), SZ demonstrated an approach bias that was re
flected in higher initial stimulus values [Ѡ SZ: 0.65 (SD: 0.03) versus 
HC: 0.55 (SD: 0.02); t(55) = 2.16, P = 0.02, d = 0.59] leading to an in
creased probability to gamble on stimuli.

Reduced learning rate decay contributes to performance 
deficits in both patient groups

To investigate how model parameters mapped onto overall task 
performance, we regressed model parameter estimates onto task 
performance across and within groups (Fig. 2H–K). The results sug
gested that the parameter governing the learning rate decay made a 
significant positive contribution to overall task performance both 
across all groups and within each group. In other words, stronger 
decay in the learning rate was associated with better overall task 
performance. As stated above, there was a general reduction in 
learning rate decay in both patient groups, and individual differ
ences in both groups correlated strongly with task performance 

(Fig. 2F and G). Moreover, across groups, increased choice stochas
ticity was associated with worse performance (Fig. 2H). This may 
suggest that subjects with reduced transfer of stimulus values to 
actions (i.e. gamble on stimuli with high values and avoid those 
with low values) did less well in the task. On the group level, this ef
fect was significant in HCs and MDD (Fig. 2I and J). Across groups 
and in SZ, increased approach bias made a significant negative con
tribution to task performance (Fig. 2K). Ideally, the initial stimulus 
value should be 0.5, as there is no information about the underlying 
reward probability of a given stimulus during the first encounter. 
Yet, our data suggested that patients, particularly those diagnosed 
with schizophrenia, attribute higher initial values to stimuli, lead
ing to an increased probability to gamble on stimuli and decreased 
task performance (Fig. 2G).

EEG results

For the EEG analyses, we regressed feedback-locked EEG activity 
across all electrodes onto single-trial model estimates of the RPE 
and its components (outcome and expected value). This revealed 
a regression weight time course for single-trial model parameter re
lated activity locked to feedback onset for all electrodes. We then 
identified the time and location (i.e. electrodes) of maximal activity 
that mapped onto the ERPs FRN and P3a/P3b and used the average 
regression weights in a predefined time window around the peak 
for second level analyses. First level regression weights were scaled 
by their respective standard errors and thus are comparable across 
subjects and regressors. The results are shown in Table 2 and Fig. 3
(detailed statistics can be found in the Supplementary material).

Table 2 EEG correlates of model estimates

Measure HC (n = 33) mean (SD) MDD (n = 31) mean (SD) SZ (n = 24) mean (SD) Inferential statistic

Reward prediction error coding
Factual feedback

FRN 1.21 (0.29)a 0.97 (0.24)a 0.74 (0.23)a F = 0.74
Outcome 1.23 (0.28)a 1.03 (0.26)a 0.72 (0.24)a F = 0.89
Expected value −0.66 (0.18)a −0.21 (0.19) −0.17 (0.2) F = 2.21†

P3a −1.20 (0.36)a −1.19 (0.29)a −1.1 (0.32) (0.36)a F = 0.03
P3b −0.89 (0.27)a −0.73 (0.29)a −0.15 (0.27)b F = 1.74†

Counterfactual feedback
FRN 0.01 (0.24) 0.24 (0.22) 0.31 (0.24) F = 0.3

Outcome 0.13 (0.23) 0.29 (0.25) 0.66 (0.25)a,c F = 1.88†

Expected value 0.36 (0.22) −0.17 (0.17) 0.54 (0.22)a,d F = 3.3*
P3a −0.37 (0.22) 0.43 (0.22)b 0.11 (0.28) F = 3.29*
P3b 0.65 (0.23)a 0.55 (0.25)a 0.42 (0.28) F = 0.2

Surprise and LR
Surprise P3 1.02 (0.24)a 0.91 (0.28)a 0.35 (0.23)a,e F = 1.7†

LR P3 0.37 (0.15)a 0.56 (0.22)a 0.22 (0.25) F = 0.45
Surprise and LR (η > 0.05) n = 20 n = 11 n = 6 –

Surprise P3 1.54 (0.30)a 2.02 (0.58)a 1.52 (0.50)a F = 0.43
LR P3 0.93 (0.33)a 1.21 (0.41)a 0.89 (0.37)a F = 0.18

Values represent averaged regression weights around the peak of the respective event-related potential component derived from the respective factor of the single-trial EEG 

general linear models (GLMs) [feedback related negativity (FRN): 230−270 ms peak at FCz; P3a: 370−450 ms peak at FCz; P3b: 450 and 550 ms]. For the extraction of regression 

weights of EEG GLM3, we averaged over slightly broader time windows (Surprise P3: 400–650 ms; Learning rate P3: 310–510 ms). HC = healthy controls; LR = learning rate; MDD =  
patients diagnosed with major depression; RPE = reward prediction error; SD = standard deviation; SZ = patients diagnosed with schizophrenia. 
aSignificantly different from zero. 
bSignificant difference to HC. 
cSignificant difference to HC; trend (P between 0.05 and 0.08). 
dSignificant difference between patients. 
eSignificant difference between patients; trend (P between 0.05 and 0.08). 
†Trend (P between 0.05 and 0.08). 

*P < 0.05.
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Factual feedback processing

Significant interrelations between the EEG signal and model derived 
RPEs were found across all groups contributing to the ERPs FRN and 
P3a. Interestingly, P3b was present in the HCs and MDD, but nearly 
absent in SZ. Next, using the RPE component GLM, we tested neural 
correlates of constituent components of the RPE [Fig. 3A(ii)]. We 
found that outcome was reflected in the FRN across all groups. 
Interestingly, the expected value of a given stimulus was only coded 
in the FRN time window in the HCs but not in the patient groups. 

Thus, only in HCs does the FRN track the required pattern of an axio
matic RPE signal.52

Counterfactual feedback processing

See Fig. 3B for a visualization of the results. Here, in line with previ
ous research, we found that RPEs are not represented in the FRN 
and P3a during counterfactual feedback processing in HCs and 
MDD. Interestingly, SZ patients showed a significant central RPE ef
fect in the FRN latency range. When testing RPE subcomponents in

Figure 3 Event-related potentials and regression weight topographies. Event-related potential (ERP) waveforms are depicted separately for factual [A(ii 
and iii)] and counterfactual [B(ii and iii)] wins and losses, together with regression weight topographies. Reward prediction error (RPE) regression weight 
means [feedback related negativity (FRN): 230–270 ms; frontocentral positivity (P3a): 370–450 ms; sustained parietal positivity (P3b): 450 and 550 ms) 
thresholded at critical P-value from false discovery rate correction]. Right: Column depicts the regression weights for the RPE components derived 
from the RPE component general linear model. Inset: Electrodes of maximal effects of early (FRN, P3a at FCz) and late (P3b at Pz) ERP correlates are de
picted. Shading indicates 99% confidence intervals. *Significantly different from zero. HC = healthy controls; MDD = major depressive disorder; SZ =  
schizophrenia; TW = time window.
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the RPE component GLM, we found exclusive outcome coding for 
SZ, as well es some evidence of expected value coding. As feedback 
processing continues, RPE are tracked in the P3b. As during factual 
feedback processing, the late P3b-like effect is blunted in SZ.

Surprise and learning

Next, we investigated the interplay between surprise and learning. In 
line with predictions from normative learning, subjects with larger 
decay in their learning rate performed better in the task (Fig. 4A). 

Here, contradicting information (i.e. unexpected losses or wins) later 
in a block is downweighed and thus influencing subsequent behav
iour less. Across groups, subjects appear to fall into one of two clus
ters: a group with a stable learning rate [η around zero; this cluster 
consisted of 25.49% HCs (13 of 33), 39.21% MDD (20 of 31) and 
35.29% (18 of 26)] and a group with substantial decrease in learning 
rate (η > 0.05), whereby the latter cluster is dominated by HCs 
[54.05% HCs (20 of 33), 29.72% MDD (11 of 31) and 16.21% SZs (6 of 
24)]. To investigate the neural underpinnings of the adaptive value 
updating described above, we first investigated subjects with a

Figure 4 Surprise and learning dynamics. (A) Overall task performance (abscissa) was positively related to learning rate decay (ordinate). Across 
groups, subjects appeared to fall into one of two clusters: a group with a stable learning rate (η around zero) and a group with a substantial decrease 
in learning rate, whereby the latter cluster was dominated by healthy controls. (B) For the learning rate decay cluster, we found a positive central- 
parietal covariance with the EEG for the absolute reward prediction error (RPE) and the learning rate with a maximal effect at electrode Pz. Grey shaded 
areas mark the time of significant effects that survived false discovery rate correction and the topographies show average regression weights for the 
significant time window thresholded at critical P-value from false discovery rate correction. Shading indicates 99% confidence intervals. HC = healthy 
controls; LR = learning rate; MDD = major depressive disorder; SZ = schizophrenia.
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substantial learning rate decrease and regressed the feedback-locked 
EEG activity across all electrodes onto the absolute RPE (i.e. surprise) 
and the learning rate on a given trial. Based on previous research, we 
focused on late central-parietal EEG activity that coincides with the 
P3b ERP component in this analysis, as this neural correlate is as
sumed to be related to behavioural adjustments.27-29 We found a 
positive central-parietal covariance with the EEG for the absolute 
RPE [significant at Pz from 400–650 ms; Fig. 4B(i)] and the learning 
rate [significant at Pz from 310–510 ms; Fig. 4B(ii)]. In line with previ
ous research,29 we suggest that the learning rate might modulate the 
baseline of P3 amplitudes: higher learning rates are associated with a 
more positive EEG signal and as the learning rate decreases the EEG 
signal also decreases (but see Nassar et al.28). Thus, this effect might 
represent the weighting of the new information, causing less value 
updates and behavioural adaptation in later trials within each block. 
Indeed, across groups, future adaptations were best predicted in this 
time window and topography by multivariate pattern analysis, and 
the learning rate effect was strongest in people with higher learning 
rate decay, whereby this relationship appeared to be blunted in SZ 
(Supplementary material). Interestingly, within the decreasing learn
ing rate cluster, absolute RPEs and trial-by-trial learning rates were 
similarly tracked in the EEG signal across groups (Table 2). Finally, 
we extracted mean regression weights (i.e. average regression 
weights within the significant covariation time window for the abso
lute RPE and learning rate regressor) for all subjects. Here, absolute 
RPEs and learning rate were less pronounced in SZ (Table 2).

Associations between model parameters and their EEG 
correlates to cognition and symptom scores

We also explored whether cognitive and clinical measures are re
lated to model parameters and their EEG correlates (all associations 
are depicted in Supplementary Fig. 5). Across groups, we found 
positive correlations between global functioning (indexed by the 
GAF score38 and task performance; significant in HCs and SZ). A 
similar pattern was found for education level (significant in HCs 
and MDD). In contrast, working memory scores were not related 
to task performance or any other variables. In HCs and MDD, higher 
alertness was associated with stronger decay in the learning rate 
(i.e. higher η) and overall performance. Higher sensitivity to discon
firmational feedback was negatively related to alertness. Learning 
biases were not related to symptom scores in MDD. In SZ, the ap
proach bias was positively associated with positive and negative 
symptom scores, which were also negatively related to overall 
task performed. There was no systematic relationship between 
EEG correlates and cognition and symptom scores.

Discussion
The goal of this study was to parse out altered learning processes in 
depression and schizophrenia. To this end, we explored probabilis
tic learning in MDD and SZ patients by combining computational 
modelling and single-trial EEG regression. In our task, participants 
had to integrate the reward history of a stimulus to decide whether 
it was worthwhile to gamble on it. Advantageous learning in this 
task was achieved through dynamic learning rates that were max
imal on the first encounters with a given stimulus and decay with 
increasing stimulus repetitions. Consistent with this idea, over 
the course of the task, choice preferences would ideally stabilize 
and be less susceptible to misleading information. We found robust 
evidence for this assumption. Across all groups, decaying learning 
rates were linked to overall task performance and switching 

behaviour. Specifically, reduced decay was associated with worse 
task performance and a higher probability of response switching 
after misleading feedback. We saw evidence for reduced decay in 
learning rates for both patient groups. These reductions were 
linked to performance deficits. The hypersensitive learning in 
both patient groups was accompanied by altered neural processing, 
including no representation of expected values in EEG dynamics in 
either patient group. These results hinted at a transdiagnostic 
learning deficit that transcends disorders as distinct as depression 
and schizophrenia. Yet, we also found distinct differences in these 
patient groups. We discuss these findings in further detail below.

Shared learning deficits in depression and 
schizophrenia

A key finding of this study is that decaying learning rates are linked 
to overall task performance. We demonstrated a reduction in learn
ing rate decay in both patients diagnosed with depression and 
schizophrenia. This reduced learning rate variation suggests that 
both patient groups show a maladaptive over-responsivity to new 
information when choice preferences should have ideally stabi
lized. Here, higher learning rates later in a block lead to over- 
adjusting, rendering their choices more susceptible to misleading 
information. In broad strokes, these results are in line with previous 
research suggesting reinforcement learning deficits in MDD53-55 and 
SZ.7,9,11,16,56-58 Our data suggest that this impairment—at least part
ly—arises from reduced trial-by-trial learning rate dynamics. It is 
worth noticing, that this feature would have been missed by aver
aging learning across trials. Indeed, there are actually no pro
nounced differences in average learning rates across groups 
[F(2,89) = 2.16, P = 0.12]. This highlights the importance of studying 
trial-by-trial dynamics (see Kirschner and Klein30 for a discussion 
on this issue). Moreover, the present findings add to the accumula
tive evidence of non-normative belief updating in mental disor
ders.22 This line of research investigates how individuals adjust 
their beliefs in light of new information. Here, maladaptive belief 
updating in clinical populations is characterized by both persistence 
and hasty changes. While our data do not support the extremes of 
maladaptive belief updating in depression and schizophrenia [i.e. 
there was no difference in the perseveration parameter (a proxy of 
persistence) across groups; moreover, choice behaviour was not bet
ter explained by a simple win-stay/lose-shift heuristic (a sign of 
hasty changes; Supplementary Fig. 8)], they hint at reduced flexibil
ity in belief update in patients diagnosed with depression and 
schizophrenia. This is in line with recent evidence suggesting less 
flexible and precise belief updating in schizophrenia.23

A different aspect of the reduced learning rate decay findings 
might be that they reflect increased uncertainty. Here, less decay in 
learning rates may suggest that patients show higher uncertainty 
about the underlying value of a stimulus even after they have received 
enough information to form a judgment on its value. Indeed, previous 
reports implicating increased uncertainty and intolerance of uncer
tainty in patients diagnosed with MDD59,60 and SZ61 provide at least 
indirect support for this idea and should motivate future work.

At a neural level, in contrast to HCs, we found no tracking 
of expected values during early stages of feedback processing in 
both patient groups. This suggests that outcome expectancy is 
less represented in SZ and MDD. This is in line with previous 
research showing deficits in anticipatory mechanisms in patients 
diagnosed with depression and schizophrenia. For example, 
Schneider et al.62 found that depressed participants had reduced pu
pil dilation during reward anticipation. Moreover, a meta-analysis of 
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functional MRI and EEG studies demonstrated that depressed indivi
duals had reduced striatal activation during reward feedback and 
anticipation, as well as a blunted FRN.36 Our results suggest that a 
blunted FRN partly results from a reduced representation of out
come expectancy and not necessarily blunted outcome processing. 
In patients diagnosed with schizophrenia, recent data showed that 
they are less able to mobilize predictive mechanisms to facilitate 
processing at the earliest stages of accessing the meanings of incom
ing words.63

Distinct learning processes in depression and 
schizophrenia

While reduced decay in learning rates reflects a convergent deficit 
across depression and schizophrenia, we also identified disorder 
distinct deficits that were related to reduced overall task perform
ance. We found a MDD specific heightened sensitivity to disconfir
mational feedback, which was reflected in higher initial learning 
rates for this feedback category. This finding adds to the accumula
tive evidence suggesting an attentional bias towards negative infor
mation in MDD.64-67 Moreover, there was a SZ- specific approach 
bias. This was reflected in higher initial expected values for novel 
stimuli in this patient group. Consistent with this, SZ patients had 
an increased probability to gamble on stimuli and difficulties avoiding 
stimuli with low reward probability. This deficit relates to research 
suggesting less flexible behaviour and increased cognitive rigidity in 
schizophrenia.68-70 At a neural level, we found exclusive fictive out
come coding in the FRN in SZ. To the best of our knowledge, this is 
the first study to demonstrate outcome tracking in the FRN for fictive 
outcomes. In previous studies,27,29,71,72 as well as in the HC and MDD 
groups, there was no representation of the outcome or RPE in the time 
range of the FRN for fictive outcomes. We speculate that this may re
flect a lower sense of agency for fictive outcomes. Thus, the represen
tation of fictive outcomes in the FRN of SZ patients may represent 
further neural evidence of a disrupted sense of agency that has previ
ously been reported in SZ.73,74 For factual feedback, we found relative
ly normal outcome tracking in the FRN, which is in line with multiple 
previous reports.30 Yet, as feedback processing continued, SZ patients 
showed blunted tracking of feedback information in the P3 latency, 
which is in line with numerous studies.31-33 Taken together, these 
findings indicate that feedback information is processed but does 
not appear to have a full impact on subsequent behaviour.

Several other results deserve discussion. First, in this study we 
were able to replicate our previous findings, that factual and counter
factual feedback are initially processed differently but converge on a 
common parietal EEG effect that drives further decisions and learn
ing.27,29 Strikingly, this adaptive mechanism is preserved in patients 
that show decay in their learning rate. This finding is in line with re
search showing intact reversal learning in a subgroup of SZ patients.69

Second, patient groups did not differ from controls in their noise para
meters, a finding that has been reported previously.10 This suggests 
that the patients did not simply apply a noisier decision strategy 
but demonstrated an impairment in learning the appropriate stimu
lus value. Third, except for a correlation between positive and nega
tive symptoms and the approach bias in SZ patients, we did not see 
a systematic relationship between our model parameters, EEG activ
ity and symptom profiles across patients. There are several reasons 
that might explain the lack of symptom associations. One consider
ation is that our patients were stably medicated, leading to lower 
symptoms and, together with the moderate sample size, this poten
tially limited our ability to detect relationships between symptom 
profiles and task measures. Moreover, our symptom measures did 

not provide a detailed assessment of symptoms related to reinforce
ment deficits that might be expected to relate to task behaviour. We 
encourage future research to use newer generation scales like the 
Brief Negative Symptom Scale (BNSS) and the Clinical Assessment 
Interview for Negative Symptoms (CAINS)75 as the primary measures 
of negative symptoms, because newer scales have an avolition or an
hedonia item, and reduced goal-oriented behaviour was a key symp
tom of interest examined our study and research into reward 
learning deficits in general. Yet, the absence of a group difference 
in the noise parameter and number of missed trials gave at least in
direct support that anhedonia and avolition were not driving group 
differences in our task. Fourth, it should be noted that most patients 
were on a variety of psychotropic medications, including antipsycho
tics and antidepressants (see Supplementary Table 1 for further de
tails). While we did not see a systematic association between 
medication and the identified learning deficits in both patient groups 
it is still possible that medication interacted with task performance. 
An important next step will be to examine medication-free patients. 
Fifth, the lack of working memory findings was surprising, given the 
established link between working memory and the reinforcement 
learning system in reward learning12,76 and seminal work showing 
that reinforcement learning dysfunction in SZ is linked to the inter
action of reinforcement learning and working memory systems.9,11

Yet, we specifically designed our task to have low demand on work
ing memory, and we did not systematically manipulate working 
memory load. The fact that we did not see an association between 
working memory capacity and performance reflects these details of 
our experimental design. Likely, other systems and mechanisms 
were predominately engaged in our task. Specifically, hypersensitiv
ity to new information (reflected in less decay in learning rates), ap
proach biases (SZ) and attentional bias to negative information 
(MDD) seemed to drive performance differences in our task. Finally, 
it is important to note that the patient groups differed in substantial 
ways other than diagnostics. For example, the SZ patients were less 
educated, and there were more females in the MDD group. We did 
not find a difference between patient groups in the key results of 
this study (i.e. both groups demonstrated a similar reduced learning 
rate decay that was linked to overall performance and an absent re
presentation of outcome prediction in the FRN) and demographical 
differences were not related to disorder specific deficits 
(Supplementary Fig. 7). Nonetheless, these differences should be con
sidered when interpreting the presented results.

In summary, through the combination of computational model
ling and single-trial EEG regression, it appears that learning deficits 
in depression and schizophrenia arise partly from reduced 
trail-by-trial learning dynamics. The hypersensitive learning in 
both patient groups was accompanied by altered neural processing, 
including no tracking of expected values in either patient group.
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