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Abstract 11 

Learning an association does not always succeed on the first attempt. Previous 12 

studies associated increased error signals in posterior medial frontal cortex (pMFC) 13 

with improved memory formation. However, the neurophysiological mechanisms that 14 

facilitate post-error learning remain poorly understood. To address this gap, 15 

participants performed a novel feedback-based association learning task and a 1-back 16 

localizer task. Increased hemodynamic responses in pMFC were found for internal 17 

and external origins of memory error evidence, and during post-error encoding 18 

success as quantified by subsequent recall of face-associated memories. A localizer-19 

based machine learning model displayed a cognitive control network, including pMFC 20 

and dorsolateral prefrontal cortex, whose activity was related to face-processing 21 

evidence in the fusiform face area. Representation strength was higher during failed 22 

recall and increased during encoding when subsequent recall succeeded. These data 23 

enhance our understanding of the neurophysiological mechanisms of adaptive 24 

learning by linking the need for learning with increased processing of the relevant 25 

stimulus category. 26 
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Introduction 27 

Forming memories and using acquired knowledge when needed is an essential 28 

cognitive capability. Imagine, for example, a teacher, who is trying to learn the names 29 

of students of a new class. For some students, the teacher will remember the names 30 

right away, but for others the teacher needs several attempts. In this study, we aim to 31 

better understand how the brain monitors learning failures and facilitates subsequent 32 

association memory formation. 33 

Based on the assumption that successful memory recall requires successful 34 

memory encoding, previous neuroimaging studies have investigated the subsequent 35 

memory effect (SME) by determining which neurophysiological signals at time of 36 

encoding predict later recall success (Brewer et al., 1998; Uncapher & Wagner, 2009; 37 

Wagner et al., 1998). Cognitive processes and brain regions contributing to the SME 38 

have been differentiated into content-processing regions in the fusiform gyrus (FG) 39 

and left inferior frontal gyrus (IFG), attention during encoding in premotor cortex (PMC) 40 

and posterior parietal cortex (PPC), as well as storage function in medial temporal 41 

lobe regions such as hippocampus and amygdala (Kim, 2011). There is, however, a 42 

lack of studies investigating how the brain monitors failed learning attempts and 43 

implements necessary adjustments, such as increased attention and brain network 44 

states for improved memory formation. Based on the broader literature on 45 

performance monitoring in speeded choice reaction time tasks, the posterior medial 46 

frontal cortex (pMFC) has consistently been implicated in accumulating evidence of 47 

task demands and a respective signaling function indicating the need for adjustments 48 

(Gruendler et al., 2011; Kirschner & Ullsperger, 2024). For example, the magnitude of 49 

error-related functional magnetic resonance imaging (fMRI) in pMFC and frontocentral 50 

electroencephalography (EEG) signals was shown to be predictive for successful 51 
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performance adaptations (Danielmeier et al., 2011; Klein et al., 2007). Interestingly, 52 

the function of pMFC in detecting memory demands and enhancing attention has been 53 

overlooked in previous studies, although hemodynamic responses in pMFC were also 54 

found to be increased during successful learning in above meta-analysis on the SME 55 

(Kim, 2011). While error-related signals in this region have been associated with 56 

improved associative learning (de Bruijn et al., 2020; Hester et al., 2008), there is a 57 

lack of studies investigating how brain regions implicated in performance monitoring 58 

and memory formation interact. 59 

On the one hand, clusters in pMFC have been linked to the midcingulo-insular 60 

salience network (Seeley et al., 2007; Uddin et al., 2019), encompassing mainly 61 

midcingulate cortex and anterior insula. Studies focusing on neurophysiological 62 

network interplay for successful cognitive performance highlighted that this network 63 

switches between upregulated lateral frontoparietal control network for external 64 

attention and upregulated medial frontoparietal default mode network for internal 65 

attention (Menon, 2015; Uddin et al., 2019). When learning associations of visual 66 

stimuli, it seems beneficial that brain networks for external attention and visual 67 

processing of memory stimuli are upregulated. During memory recall, hemodynamic 68 

responses in default mode network regions have been found to be increased (Shapira-69 

Lichter et al., 2013), potentially based on attention towards internal stimulus 70 

representations. Memory performance likely also benefits from enhanced 71 

maintenance stimulus features, which is often referred to as stimulus rehearsal and 72 

may represent a combination of both, internal and external attention. 73 

From a methodological perspective, the neurophysiological underpinnings of 74 

detected memory demands can be estimated by contrasting neural representations 75 

associated with low versus high confidence ratings and performance-based feedback 76 
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for failed versus correct recalls. According to the logic of the SME, the overall quality 77 

of memory encoding can be inferred from a participant’s performance during 78 

subsequent recall. However, it is less straightforward to determine the extent to which 79 

attention is allocated to memory-relevant stimuli.  80 

While previous studies have speculated on the mechanisms for attentional 81 

allocation of error-driven learning improvements (Gilmore et al., 2018), the current 82 

study modelled the level of evidence for processing the memory-relevant category. 83 

Improved external attention should support the extraction of to-be-learned stimulus 84 

features and increased internal attention following stimulus presentation should 85 

strengthen perceptual representations via mental rehearsal. During these memory 86 

formation epochs, neurophysiological processing of the memorized stimulus category 87 

should be increased when more attention is allocated on a stimulus. The detection of 88 

a memory error should lead to increased stimulus processing and a higher likelihood 89 

that the presented association will be remembered. Multivariate decoding may be a 90 

useful tool to capture the strength of and evidence for stimulus representations during 91 

different phases of memory formation. Previous studies have shown that the degree 92 

of behavioral relevance of a presented stimulus category can be decoded during 93 

respective cognitive tasks (Erez & Duncan, 2015; Leong et al., 2017) and that stimulus 94 

decodability is related to the degree how much attention is allocated (Nelissen et al., 95 

2013). While most task-based fMRI studies have used multivariate pattern analyses 96 

to compare decoding accuracies for a set of stimuli, it has been suggested the decision 97 

function of multivariate models contains a more fine-grained pattern of stimulus 98 

evidence (Walther et al., 2016), which can be used to determine single-trial differences 99 

in stimulus processing and decodability. Here, we tested the hypothesis that regions 100 

associated with the monitoring of memory performance, such as pMFC, reflect 101 
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upregulated selective attention, as approximated by single-trial evidence of stimulus-102 

processing in stimulus-specific regions. The current study investigates face-103 

processing evidence in the ventral visual stream, because of its well described 104 

topography in the posterior and mid-fusiform gyrus (Caspers et al., 2013; Lorenz et 105 

al., 2015), often referred to as fusiform face area (FFA, (Kanwisher et al., 1997). If 106 

nodes in the midcingulo-insular salience network link memory-related demand 107 

detection, upregulated FFA-based face-processing and improved memory success, 108 

this will improve the understanding how brain networks for performance monitoring, 109 

stimulus-based attention and memory formation interact. 110 

Results 111 

Performance on the novel feedback-based association learning task 112 

 During continuous fMRI scanning, participants (n = 30) performed a feedback-113 

based association learning task (FALT), in which they had to learn which of eight 114 

orientations of a gabor patch is associated to a set of unknown faces. Each trial 115 

consisted of a recall phase where only the face was presented, the choice of a 116 

presumed orientation, the selection of a low or high recall confidence, the presentation 117 

of performance-based feedback, and the display of the correct combination of the face 118 

and the associated gabor patch, followed by an inter-trial-interval (ITI), which offered 119 

a chance for stimulus rehearsal (Fig. 1a). Each participant performed five independent 120 

runs, in which eight new faces were learned and repeated in three more blocks. Across 121 

all runs and blocks in FALT, participants correctly remembered the associations 122 

between faces and the eight different orientations of the gabor patches in 59.35 % (SD 123 

= 15.20) of trials [t(29) = 16.88, p < .001, one-sample t-test > 12.5 % chance level]. 124 

Memory performance was improved for face repetitions in later blocks [F(1,29) = 125 

93.53, p < .001, one-way ANOVA], with comparable recall success in block 3 and 126 
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block 4 [F(1,29) = 2.23, pHSD = .593, Tukey’s HSD; Fig. 1b]. Correct trials were 127 

associated with ratings of high confidence on 80.14 % (SD = 14.28) of trials, and for 128 

failed recall participants selected a low level of confidence on 76.22 % (SD = 17.78) 129 

of trials (Fig. 1c). Participants had good meta-memory performance [dPrime = 0.95; 130 

t(29) = 11.76, p < .001, one-sample t-test > 0], without an indication of a bias towards 131 

under- or overconfidence [dBias = -.03; t(29) = 0.24, p = .811, one-sample t-test]. 132 

Together, these results suggest that participants learned to associate faces with tilted 133 

gabor patches and gained accurate confidence levels in a novel feedback-based 134 

association learning task. 135 

 136 

Fig. 1 | Trial structure and behavioral results of the feedback-based association 137 

learning task (FALT). a, In a continuous learning experiment, participants learned to 138 

associate faces and eight different orientations of gabor patches. During a trial, 139 

participants chose the presumed orientation, selected a low or high level of confidence 140 

and obtained either positive or negative feedback. Finally, the correct combination of 141 

face and gabor patch was presented as a learning opportunity for trials showing the 142 

same face in later blocks, followed by a jittered inter-trial-interval (ITI). b, Participants 143 
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successfully learned the presented associations and recalled the matching orientation 144 

of the gabor patch better in later repetitions of a face. c, In most of the trials, 145 

participants were able to distinguish successful and failed memory recall, indicating 146 

reasonable meta-memory performance. 147 

Implicit and explicit evidence for memory errors is represented in pMFC 148 

In FALT, on each trial participants accumulated evidence on the quality of a 149 

current memory representation, both implicitly and explicitly. First, they attempted to 150 

recall the correct association to a face. Thereafter, they indicated their confidence in 151 

their response (binary variable low vs. high confidence). Finally, they received 152 

feedback regarding the correctness of the chosen orientation of the gabor patch. 153 

Accordingly, there were three different epochs for modelling neurophysiological 154 

correlates on the monitoring of memory errors. Univariate general linear model (GLM) 155 

analyses showed increased hemodynamic responses in pMFC at all stages of error 156 

monitoring in the task (Fig. 2). These epochs showed pMFC effects during failed recall 157 

[ErrorConfidenceLow > CorrectConfidenceHigh; z(29) = 4.30, pFDR < .05, x = 5, y = 22, z = 40], 158 

the selection of recall uncertainty [low > high confidence; z(29) = 4.87, pFDR < .05, x = 159 

3, y = 35, z = 36] and the presentation of memory-error feedback [negative > positive 160 

feedback; z(29) = 6.80, pFDR < .05, x = 5, y = 17, z = 51]. Variance-inflation-factor 161 

indices were < 5 for all error monitoring regressors, indicating sufficiently low 162 

multicollinearity. The overlap in the cluster location of pMFC in all three epochs 163 

suggested that pMFC’s presumed function in performance monitoring also applies to 164 

tracking internal and external evidence of currently inaccurate memory 165 

representations. 166 
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 167 

Fig. 2 | Hemodynamic responses related to the monitoring of memory errors in 168 

the feedback-based association learning task (FALT). a, All three types of 169 

memory-error evidence, such as b, failed recall attempts, c, the selection of low 170 

confidence and d, negative feedback showed increased hemodynamic responses in 171 

posterior medial frontal cortex (pMFC) in a univariate general linear model analysis. 172 

Error-related pMFC activity predict successful subsequent recall 173 

After an attempted recall in FALT, participants had another learning 174 

opportunity, in which the correct association of the presented face and gabor patch 175 

was displayed. For failed recall trials, a univariate GLM analysis determined which 176 

neurophysiological differences during post-error encoding epochs distinguish 177 

successful and failed subsequent recall. Results for the post-error SME showed 178 

increased hemodynamic responses in pMFC [ErrorLowConfidenceCorrectHighConfidence > 179 

ErrorLowConfidenceErrorLowConfidence, z(29) = 5.37, pFDR < .05, x = -3, y = 0, z = 71], and 180 

replicated regions previously reported for the SME, such as IFG, FG, PPC and PMC 181 
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(Fig. 3 and Supplementary table 4). While the function of pMFC for memory 182 

formation has been neglected in a previous meta-analysis (Kim, 2011), the overlap 183 

with memory-error related regions suggested a preparatory role for an adaptive 184 

learning state. Successful post-error learning improvement has been related to 185 

increased error-related fMRI and EEG signals before. Yet, the correlational nature of 186 

these results precludes a better understanding of the underlying mechanisms. We 187 

suggest that a candidate mechanism is increased processing of information relevant 188 

to resolve the problem at hand. To test this idea, we applied a model on the strength 189 

of stimulus representations as a marker of allocated attention to the presented 190 

stimulus category. 191 

 192 

Fig. 3 | The post-error subsequent memory effect in a univariate functional 193 

magnetic resonance imaging (fMRI) analysis. a, The bar plot shows the number of 194 

trials per participant for the combination of recall success in the current trial and recall 195 

success for the next presentation of the same face. The aim was to distinguish trials 196 

with memory (re-)encoding demands which lead to successful memory formation 197 

(ErrorCorrect) from failed recall trials which did not lead to successful post-error 198 

learning adjustments (ErrorError). b, Univariate general linear model fMRI results 199 
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replicated previously described regions from a meta-analysis on the subsequent 200 

memory effect (Kim, 2011), showing increased successful recall 201 

(ErrorLowConfidenceCorrectHighConfidence) compared to trials repeatedly failed recall 202 

(ErrorLowConfidenceErrorLowConfidence).The pMFC cluster for the post-error subsequent 203 

memory effect overlapped with the cluster related to the monitoring of memory errors 204 

(Fig. 2), suggesting its demand-dependent upregulation has a preparatory function. 205 

The 1-back localizer task captured face-selective processing in a 206 

cytoarchitectonic mask of the fusiform gyrus 207 

To build a model of stimulus representation strength, we trained a classifier on 208 

fMRI data of a 1-back localizer task, in which participants had to press the confirmation 209 

key for a repetition of the stimuli presented in the preceding trial (Fig. 4a). Within each 210 

trial, participants saw either a face or a house in combination with a gabor patch. 211 

According to signal detection theory, a trial was either classified as hit, miss, correct 212 

rejection or false alarm. The 28 out of 30 participants, who performed the task either 213 

without mistakes or within two standard deviations from the group average (Fig. 4b), 214 

were included in the fMRI analyses and multivariate cross-classification. Univariate 215 

GLM analyses in the 1-back localizer task showed that hemodynamic responses were 216 

larger for faces than houses in FFA, as determined by a strong overlap with 217 

cytoarchitectonic probability maps of left and right FG-4 [FaceCorrectRejection > 218 

HouseCorrectRejection; z(27) = 5.48, pFDR < .05, x = 44, y = -46, z = -27], but also in other 219 

regions previously described as face-selective such as superior temporal sulcus [z(27) 220 

= 4.48, pFDR < .05, x = 51, y = -46, z = 5] and anterior temporal lobe [z(27) = 4.87, pFDR 221 

< .05, x = 40, y = 19, z = -31, Fig. 4 and Supplementary table 5]. Increased 222 

hemodynamic responses for houses compared to faces were found in regions among 223 

parahippocampal gyrus [HouseCorrectRejection > FaceCorrectRejection; z(27) = 7.02, pFDR < 224 
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.05, x = -29, y = -52, z = -5; Fig. 4 and Supplementary table 6]. Overall, univariate 225 

fMRI results in the localizer task displayed the classical dissociation in the ventral 226 

visual stream, displaying FFA-related hemodynamic responses being larger for faces 227 

and house-specific hemodynamic responses in parahippocampal gyrus. 228 

In the localizer task, a machine learning model was trained, in order to predict 229 

the strength of FFA-based face-processing evidence during memory-relevant epochs 230 

in FALT. Multivariate cross-classification was performed on fMRI data within an FFA 231 

mask based on cytoarchitectonic probability maps of left and right FG-4, to quantify 232 

face-specific processing evidence in the ventral visual stream. The 14 strongest 233 

ANOVA-feature selected voxels in the FFA mask were extracted from deconvolved 234 

single-trial betaseries to train and apply the machine learning-based face-processing 235 

model. Leave-one-run-out cross-validation reached an average balanced decoding 236 

accuracy of 73.15 % [t(27) = 12.38, p < .001, one-sample t-test, > 50% chance level] 237 

on distinguishing faces and houses in trials of respective left-out runs in the localizer 238 

task. The prediction of house and face stimuli was balanced, showing no trend in the 239 

likelihood of the face representation strength models to prefer either of both categories 240 

[t(27) = -0.18, p = .854, two-sample t-test]. Taken together, the decoding accuracies 241 

and control analyses suggested that the multivariate face-processing model was able 242 

to evaluate face-processing evidence by distinguishing face and house trials. 243 
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 244 

Fig. 4 | Localizer task trial structure, behavioral results, univariate fMRI analyses 245 

and training of machine learning-based face-processing model. a, The 1-back 246 

localizer task had comparable presentation times as chosen in the feedback-based 247 

association learning task (FALT) for the stimulus presentation and the inter-trial-248 

interval (ITI). In two of 16 trials per run, direct stimulus repetitions occurred. On these 249 

repetitions, participants were instructed to quickly press the confirmation key. The task 250 

consisted of five runs, each containing two novel faces and two novel houses. b, Most 251 

participants performed the task without mistakes (misses or false alarms). Two 252 

participants were excluded from further fMRI analyses of the localizer task and later 253 

multivariate pattern analyses, because task comprehension and attention to the task 254 

could not be assured. c, Conventional general linear model (GLM) analyses showed 255 

that hemodynamic responses were larger for faces than houses in the right fusiform 256 

gyrus, and larger for houses than faces in the parahippocampal gyrus (PHG). The 257 

fusiform gyrus cluster largely overlapped with a cytoarchitectonic probability mask for 258 

fusiform gyrus 4 (cFG4) and was identified as fusiform face area (FFA). d, A 259 

probability-scaled linear support vector machine was trained to distinguish faces and 260 
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house based the 14 strongest voxels in the cFG4 mask according to ANOVA-feature 261 

selection, to quantify FFA-based face-processing evidence. Average classification 262 

accuracies during leave-one-run-out cross-validation showed a balanced prediction 263 

for faces and houses. e, The assessed distance from the multivariate hyperplane 264 

indicates evidence for face-processing as shown in the schematic overview. 265 

FFA-based face-memory representations are simultaneously upregulated in a 266 

cognitive control network 267 

In the next step, the participant-specific face-processing models, which were 268 

trained on trials in the localizer task, were applied to the single-trial betaseries of 269 

memory-relevant epochs in FALT, i.e., the presentation of the face in the recall phase, 270 

processing of the correct face-orientation association during encoding, and a 271 

rehearsal phase in the inter-trial-interval. The classifier predicted the presentation of 272 

face in 72.23 % (SD = 19.38) of recall betaseries, in 39.53 % (SD = 18.58) of encoding 273 

betaseries, and in 17.35 % (SD = 18.72) of rehearsal betaseries. The classifier’s 274 

decoding accuracies were systematically related to the predicted class probability 275 

averages of a participant, during recall [RSpearman(27) = .97, p < .001], encoding 276 

[RSpearman(27) = .93, p < .001] and rehearsal [RSpearman(27) = .94, p < .001]. This 277 

correspondence was expected and underlined that the probability measure contained 278 

information relevant to differentiate the representation strength memory-relevant 279 

stimuli on a single-trial level. Higher representation strength for face processing 280 

showed the strongest FFA-related hemodynamic responses in a region overlapping 281 

with the cytoarchitectonic mask for FG-4 as shown by separate GLMs for recall 282 

(Supplementary table 7), encoding (Supplementary table 8) and rehearsal 283 

(Supplementary table 9) in FALT. Higher face-representation strength was also 284 

reliably related to regions among pMFC, dlPFC and visual cortex for all three memory-285 
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relevant epochs (Fig. 5). During recall and encoding, bilateral anterior insula showed 286 

increased hemodynamic responses related to face-processing evidence. During 287 

encoding and rehearsal, associations of single-trial representation strength were also 288 

overlapping with bilateral cytoarchitectonic masks of the basal forebrain and the 289 

border zone between amygdala and the nucleus basalis of Meynert. The pMFC 290 

topography during all three memory epochs overlapped with the pMFC cluster found 291 

for the monitoring of inaccurate memory representations and in the post-error SME, 292 

which suggested a role in the maintenance of upregulated memory-relevant stimulus 293 

representations. Overall, multivariate cross-classification analyses highlighted brain 294 

network nodes simultaneously upregulated with increased face-processing in face-295 

specific regions of the ventral visual stream. This suggests that these regions work in 296 

concert to allocate attention in form of upregulated stimulus representations, which 297 

could enhance cognitive operations for association learning, such as extracting 298 

memory-relevant stimulus features or improving stimulus maintenance. 299 
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 300 

Fig. 5 | Neurophysiological and behavior underpinnings of FFA-based face-301 

processing evidence during memory-relevant epochs in the feedback-based 302 

association learning task (FALT). The support vector machines, which were trained 303 

on the 1-back localizer task of a participant, predicted face processing during memory 304 

encoding rehearsal and recall in FALT, based on the 14 most face-selective voxels in 305 

the cytoarchitectonic probability mask of a fusiform gyrus 4 region. a, GLM results on 306 

evidence for face-processing displayed increased hemodynamic response in regions 307 

among fusiform face area (FFA), posterior medial frontal cortex (pMFC), dorsolateral 308 

prefrontal cortex (dlPFC), anterior insula (Ins), premotor cortex (PMC), and a cluster 309 

overlapping with a cytoarchitectonic mask of the basal nucleus of Meynert (NBM) 310 

subregion of the cholinergic basal forebrain (cBF) and amygdala. b, The level of 311 

evidence for face-processing was higher when there was a demand of memory 312 
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improvement during recall and encoding, and significantly higher for subsequent recall 313 

success during encoding epochs, as found in the linear mixed model results. 314 

FFA-based face-processing evidence is increased after memory errors and 315 

predictive of subsequent recall success  316 

The proxy measure for the strength of stimulus representations, as a marker of 317 

allocated attention to the presented stimulus category, was also analyzed regarding 318 

its correspondence with behavioral necessity and success on learning the presented 319 

associations. The analyses were restricted to ErrorError, ErrorCorrect and 320 

CorrectCorrect trials to understand how encoding demand and encoding success 321 

were linked to the level of stimulus representations strength. CorrectError trials were 322 

excluded since they were not present in all participants and because the quality of 323 

memory representations for a successful recall was doubtful due to its later memory 324 

failure. During memory recall, encoding demand was associated with a 3.2 % increase 325 

in face-processing evidence [z(27) = 6.89, p < .001], and subsequent recall success 326 

with a 1.1% increase [z(27) = 1.92, p = .055] in multivariate classification evidence for 327 

face representations (Supplementary table 10). During encoding, encoding demand 328 

was estimated to increase the face-processing by 3.9% [z(27) = 7.176, p < .001] and 329 

subsequent recall success was related to a 1.5 % [z(27) = 2.254, p = .024] increased 330 

probability in the linear mixed model analysis (Supplementary table 11). During 331 

stimulus rehearsal, neither encoding demand [z(27) = 1.571, p = .116], nor subsequent 332 

recall success [z(27) = -0.343, p = .732] significantly predicted the single-trial level of 333 

evidence for face-processing (Supplementary table 12). The increase in stimulus 334 

representation strength during memory formation during recall and encoding suggests 335 

increased allocation of attention to the presented stimulus category according to the 336 

necessity of learning and the success in forming association memories. During a failed 337 



ERROR-DRIVEN UPREGULATION OF MEMORY REPRESENTATIONS 17 

recall, the need for increased attention may already become evident and increase 338 

face-processing for the following encoding attempt. During encoding, enhanced face-339 

processing indicated a facilitation in memory formation by successful subsequent 340 

recall. Increased processing of the memory-relevant stimulus category in the ventral 341 

visual stream, therefore, links the monitoring memory errors with improved associative 342 

learning both on a behavioral level and related to cognitive control network regions.  343 

Discussion 344 

The present study aimed to investigate which brain regions detect memory 345 

errors and coordinate adaptation processes to improve memory formation. Different 346 

sources of memory-error evidence overlapped in a pMFC cluster, which showed 347 

increased hemodynamic responses during memory-error related events, such as 348 

during failed recall, the selection of low confidence and the presentation of negative 349 

feedback. A posterior portion of the error-related pMFC cluster further distinguished 350 

later successfully remembered memory-error trials from repeatedly failed memory 351 

formation attempts. The level of FFA-based face-processing evidence was related to 352 

increased single-trial hemodynamic responses in regions of a cognitive control 353 

network. This network encompassed pMFC, dlPFC, visual cortex, anterior insula and 354 

a cluster overlapping with basal forebrain and amygdala, for the upregulation of 355 

memory-relevant stimulus representations. Stronger face-processing evidence in the 356 

ventral visual stream was linked to the demand of improving memory formation during 357 

failed recall, and was further upregulated during improved post-error encoding epochs, 358 

as determined by subsequent recall success. 359 

The results favor the perspective that pMFC is involved in monitoring incorrect 360 

and low-confident memory representations and that it orchestrates brain networks 361 

involved in allocating attention to the relevant stimulus category for error-driven 362 
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improvements in memory formation. Previous studies have shown that the monitoring 363 

of behaviorally relevant events is associated with hemodynamic responses and 364 

electrophysiological signals in pMFC (for a review, see Kirschner & Ullsperger, 2024). 365 

It has been an open question whether pMFC’s function in performance monitoring also 366 

applies to evaluating the quality of memory representations. The current study 367 

demonstrates that increased hemodynamic responses in pMFC are related to the 368 

processing of negative feedback, as has been described for failed associative recall 369 

in previous fMRI (Hester et al., 2008) and EEG (de Bruijn et al., 2020) studies. 370 

Furthermore, overlapping clusters in pMFC were also found for hemodynamic 371 

responses during failed recall attempts and upon reporting low confidence, which 372 

suggests a more general role of pMFC in accumulating evidence of memory errors 373 

beyond the processing external error evidence, such as during the presentation of 374 

negative feedback. If increased fMRI signals in pMFC are relevant for recognizing the 375 

insufficiency of current memory representations, pMFC’s involvement in the post-error 376 

SME suggests a role in driving error-following adjustments in associative learning. 377 

Consistently, error-related signals in pMFC have shown to be predictive for later recall 378 

success (de Bruijn et al., 2020; Hester et al., 2008) and enhanced performance in 379 

other cognitive tasks (Danielmeier et al., 2011; Klein et al., 2007). Results of the 380 

current study complement a meta-analysis of previous fMRI studies on the SME (Kim, 381 

2011), which has shown consistent involvement of pMFC in the SME but has not 382 

described its function for memory formation. In this regard, the results demonstrate 383 

that pMFC is not only related to successful encoding but its hemodynamic responses 384 

are already increased upon monitoring error evidence, which is closely linked to 385 

encoding demand and emphases a preparatory function for following learning 386 

attempts. 387 
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While previous studies have shown increased pMFC-based error signals for 388 

improved performance, it has been an open question how post-error learning 389 

improvements are implemented. One of the speculated mechanisms how failed recall 390 

leads to enhanced memory formation, has been increased attentional allocation 391 

(Gilmore et al., 2018). The current study tested the hypothesis that detected recall 392 

errors increase the processing of memory-relevant stimulus representations to 393 

facilitate association learning. The current study used FFA-based fMRI evidence for 394 

face-category processing as a proxy measure for stimulus-based attention and 395 

showed that hemodynamic responses in regions such as pMFC, dlPFC, anterior insula 396 

and the basal forebrain increase as a function stimulus-specific processing evidence. 397 

These regions may interact to enhance attention for following learning attempts. While 398 

multivariate pattern analyses have been used to estimate levels of attention, it 399 

remained to be shown that a marker for allocated attention provides a link between 400 

memory-error detection and improved learning. Previous studies have used 401 

multivariate fMRI analyses to show that decoding accuracies and classification 402 

probabilities are increased for attended objects. More specifically, the highest 403 

decoding accuracies of occipitotemporal stimulus representations have been found for 404 

stimuli in the focus of attention (Nelissen et al., 2013) and when they are behaviorally 405 

relevant (Erez & Duncan, 2015). Another study used a combination of multivariate 406 

classification probability and eye tracking to develop a marker for how much attention 407 

was allocated (Leong et al., 2017). By using single-trial decoding probabilities instead 408 

of binary classification accuracies (Walther et al., 2016), the relationship between 409 

neurophysiological processing strength of memory-relevant stimulus representations 410 

and their behavioral correspondence to encoding demand and subsequent learning 411 

success became apparent. This suggests that multivariate evidence for stimulus-412 
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processing during associative learning can be used as a marker for stimulus-based 413 

attention and represents a link between performance monitoring and improved 414 

memory formation. The current study aligns with previous studies linking multivariate 415 

stimulus models with behavior, by showing that single-trial evidence for face-416 

processing in face-selective ventral visual stream regions is associated with increased 417 

hemodynamic responses in pMFC. This suggests a systematic relationship between 418 

the neurophysiological underpinnings of enhanced stimulus representations, the 419 

detection of memory errors and following encoding success. 420 

Assuming that, upon the detection of respective task demands, pMFC 421 

upregulates stimulus-selective regions such as FFA for face processing, direct or 422 

indirect synaptic connections between these regions could mediate error-driven 423 

adaptations on visual attention (Ullsperger & Stork, 2021). Rodent studies suggested 424 

that direct connections between midfrontal and visual regions underly post-error 425 

upregulation of visual attention (Norman et al., 2021). Other studies emphasized that 426 

lateral frontoparietal network regions, such as dlPFC, are responsible for maintaining 427 

stimulus representations for memory formation (Curtis & D'Esposito, 2003; Nelissen 428 

et al., 2013). In the current study, representation strength was also associated with 429 

increased hemodynamic responses in dlPFC, suggesting it as an important node of a 430 

control network for attentional allocation. In this regard, effects between stimulus-431 

specific regions, such as FFA in the ventral visual stream, and the midcingulo-insular 432 

salience network regions, such as pMFC and anterior insula, may be mediated by 433 

lateral frontoparietal control network upregulation (Menon, 2015). During encoding 434 

and rehearsal, FFA-based evidence for face-processing was, however, also related to 435 

a cluster at the border zone to the basal forebrain, a region important for modulating 436 

arousal (Liu et al., 2018; Turchi et al., 2018) and releasing the neuromodulator 437 
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acetylcholine. The cholinergic system has shown to mediate post-error upregulation 438 

of visual attention in a pharmacological fMRI study (Danielmeier et al., 2015). Further 439 

work is needed to determine to which degree these different pathways are exclusive 440 

or working in concert, to understand whether and when an error-driven increase of 441 

stimulus processing is caused by direct pMFC connections to stimulus-specific 442 

regions, mediated by lateral frontoparietal network regions such as dlPFC and/or 443 

modulated by the basal forebrain cholinergic system. 444 

In conclusion, the current study showed that higher hemodynamic responses 445 

in pMFC are not only related to improved encoding but are already increased when 446 

there is evidence of currently-insufficient memory representations. Higher FFA-based 447 

face-processing evidence was accompanied by a systematic increase of 448 

hemodynamic responses in regions among pMFC, dlPFC, visual cortex, anterior 449 

insula, basal forebrain and amygdala. When sufficient evidence on memory errors has 450 

been detected, these regions may interact to increase attention during encoding and 451 

improve following learning attempts. In the past years, multivariate fMRI analyses 452 

have gained popularity and decoding accuracies of brain regions have been used as 453 

estimate for how much stimulus information is represented in neurophysiological data. 454 

In this regard, the current study highlights how multivariate stimulus-based models 455 

vary in correspondence with hemodynamic responses of a midcingulo-insular network 456 

node in pMFC, which may monitor task demands and detect memory errors. The 457 

results help explain in correspondence with which brain regions stimulus 458 

representations are enhanced for improved memory formation, and emphasize 459 

memory-error detection as a basis for adaptive task performance and associative 460 

learning. Future studies may implement single-trial analyses and investigate 461 
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multivariate processing evidence, to explain why memory formation fails or succeeds 462 

from time to time. 463 

Methods 464 

Participants 465 

30 young adults (15 male, age 18-35 years) participated in the current fMRI 466 

study after checking inclusion criteria (body mass index between 20 and 30 kg/m2, 467 

non-smokers, no history of psychiatric or neurological disorders, no metal implants) 468 

via phone interview. Participants gave written informed consent before the study 469 

began and were compensated with study credits or money (10 EUR per hour) for their 470 

time. They obtained written instructions on the behavioral tasks and task 471 

comprehension was checked within a practice session outside the scanner. Next, 472 

participants were positioned in the MRI scanner. The keyboard was placed under the 473 

right hand, a photoplethysmography sensor on the left middle finger and a breathing 474 

belt around the chest on the position of the highest elevation. The study was approved 475 

by the ethics committee of the medical faculty at Otto-von-Guericke University 476 

Magdeburg, Germany. 477 

Stimuli 478 

Publicly available images of emotionally neutral faces from the Picture 479 

Database of Morphed Faces (Jäger et al., 2005) and house images from the 480 

DalHouses sample (Filliter et al., 2016) were used. The background color of the house 481 

images was replaced with the same grey scale as in the face images. The tasks also 482 

contained eight differently tilted gabor patch stimuli with an orientation point in 483 

extension of the middle white stripe rendered with Psychtoolbox 3 with Matlab 2018a 484 

on a Windows 10 computer. 485 
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Behavioral tasks 486 

In FALT (see Fig. 1a), participants learned to associate faces with gabor 487 

patches in eight possible orientations. Each trial began with an inter-trial-interval (ITI) 488 

showing a fixation cross in the middle of the screen for a jittered duration between 489 

2500 and 6000 milliseconds (ms). Then, a face stimulus was presented and 1000 ms 490 

later a gabor patch appeared in a random but incorrect orientation. Participants had to 491 

choose the matching orientation with their right index finger for a left directed rotation 492 

and right ring finger for a right directed rotation. If they saw a face for the first time, 493 

they were instructed to make a guess. On subsequent encounters of the face, they 494 

should recall the associated orientation from their memory. After confirming their 495 

choice with the right middle finger, low and high confidence options were presented 496 

on screen, such that participants could indicate their recall certainty with respective 497 

index and ring finger presses. The side of presentation for low-confidence and high-498 

confidence ratings was altered for each trial. After a 200 ms delay period, based on 499 

recall success, either positive or negative feedback was presented for 800 ms. At the 500 

end of each trial, the correct combination of face and gabor patch was presented for 501 

1500 ms for (re-) encoding. Each face was presented four times, with at least two and 502 

a maximum of 15 trials until the next trial with the same face. The task consisted of 503 

five independent runs with eight new faces each, summing up to 160 trials in total. 504 

Between runs, participants were presented with a pause screen on which the relative 505 

number of correct trials was displayed. The next run with eight new face stimuli was 506 

resumed with a confirmation button press. 507 

In the 1-back localizer task, on each trial, participants were presented a face or 508 

a house together with a gabor patch in one of eight possible orientations. They were 509 

instructed to attend and compare both stimuli with the stimulus combination shown in 510 
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the directly preceding trials, and to press the confirmation key as fast as possible when 511 

the presented stimulus combination was a direct repetition (see Fig. 4a). Presentation 512 

times were analog to the durations of encoding with 1500 ms and the ITI jittered 513 

between 2500 and 6000 ms as in FALT. Within each run, two new face and two new 514 

house stimuli were presented four times each, summing up to 80 trials for five runs in 515 

total. Direct repetitions occurred in two of 16 trials per run to keep participants engaged 516 

with attending, encoding and rehearsing the presented stimuli. 517 

Data acquisition 518 

Magnetic resonance imaging (MRI) data were obtained by a 3 Tesla Siemens 519 

Prisma scanner with a 64-channel head coil. After brief anatomical scout images, 520 

structural MRI data were assessed using a magnetization prepared rapid gradient 521 

echo sequence in sagittal slices (voxel size = 1 x 1 x 1 mm, matrix size = 192 x 256 x 522 

256, repetition time = 2.5 s, echo time = 0.00282 s, flip angle = 7°, multi band factor = 523 

2). While participants performed the FALT and the localizer task, fMRI scans were 524 

recorded with a field of view aligned to anterior and posterior commissures (voxel size 525 

= 2.2 x 2.2 x 2.2 mm, matrix size = 100 x 100 x 66, repetition time = 2.0 s, echo time 526 

= 0.03 s, flip angle = 80°, multi band factor = 2, interleaved order, no interslice gap). 527 

Single band reference images were recorded on the first and field maps after the last 528 

functional scan. Due to technical issues, one participant lacked the single-band 529 

reference image and two participants lacked peripheral physiological recordings. 530 

fMRI preprocessing 531 

MRI data were converted using dcm2niix (version v1.0.20190902), and 532 

renamed in accordance with Brain-Imaging-Data-Structure format (Gorgolewski et al., 533 

2016). Data were analyzed on a high-performance computing cluster using Linux 534 

Debian (version 4.9.0-16-amd64). For preprocessing, fMRIPrep version 23.2.2 535 
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(Esteban et al., 2019) was run with a singularity image (version 2.6.1-dist) wrapped 536 

around a docker container. Preprocessing encompassed slice time correction, 537 

susceptibility distortion correction, boundary-based registration and spatial 538 

normalization to obtain images in MNI152NLin2009cAsym output space, keeping the 539 

size of 2.2 mm3 voxels. Further details on fMRIPrep-based preprocessing pipeline can 540 

be found in the section Supplementary Methods. Physiological regressors for 541 

retrospective image correction of respiratory and cardiac confounds were obtained 542 

from the PhysIO package in the TAPAS toolbox (Kasper et al., 2017). For 543 

simultaneous denoising and fitting of event-related hemodynamic response functions,  544 

GLMs on the preprocessed images contained following confound regressors: 24 545 

motion parameters (six rigid body motion parameters, six derivatives, and respective 546 

twelve squared motion parameters), 18 physiological regressors (six cardiac, eight 547 

respiration, four combined cardiac and respiration), ten anatomical component 548 

correction regressors (five white matter, five cerebrospinal fluid), the global signal, a 549 

cosine drift model and a constant intercept. 550 

Behavioral analyses 551 

In FALT, for in total 160 trials in four blocks and because participants had to 552 

guess in the first block, there were maximally 120 trials in which participants could 553 

remember the correct orientation of the associated gabor patch from a past learning 554 

opportunity. A one-sample t-test against chance level of 12.5 % was performed for the 555 

relative number of correct trials per participant, to determine whether the presented 556 

face and gabor patch associations were successfully learned. The performance 557 

increase between different blocks was assessed with a one-way analysis of variances 558 

(ANOVA) and post-hoc tests with Tukey’s honestly significant differences (HSD). 559 

Participant’s meta-memory performance (dPrime) was assessed as the average of the 560 
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probability distribution between the proportion of high-confidence selections upon 561 

successful recall (sensitivity) and the proportion of low-confidence selections in failed 562 

recall trials (specificity). Sensitivity and specificity probability distributions functions 563 

were adjusted for infinite values by subtracting the proportion of one correct or 564 

incorrect trial respectively. Meta-memory performance dPrime and bias dBias were tested 565 

for significance with a one-sample t-test. 566 

In the 1-back localizer task, there were ten repetition trials on which participants 567 

had to press the confirmation key and 70 non-repetition trials where they were 568 

instructed to attend and encode the presented stimuli but not to press. According to 569 

signal detection theory, trial types were distinguished into hits for a correct press on a 570 

repetition, misses for a non-press on a repetition, correct rejections for a non-press on 571 

a non-repetition and false alarms for a press on a non-repetition. Task performance 572 

was evaluated based on hit and correct rejection rates and significance was tested 573 

using one-sample t-tests. Insufficient task comprehension of a participant was 574 

assumed for outliers, which were defined by a task performance being two standard 575 

deviations (SD) lower than the average (M) performance of all participants. 576 

fMRI analyses 577 

In FALT, univariate GLM fMRI analyses were conducted by simultaneously 578 

fitting a hemodynamic response function using the Glover model convolved with 579 

respective event regressors during memory recall (ErrorConfidenceLow or ErrorConfidenceHigh 580 

or CorrectConfidenceLow or CorrectConfidenceHigh), confidence selection (low or high), 581 

feedback presentation (positive or negative), encoding as determined by current and 582 

subsequent recall success (ErrorError or ErrorCorrect or CorrectCorrect or 583 

CorrectError in combination with respective confidence levels). Two GLM analyses 584 
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were performed, one for the post-error subsequent memory effect and one for 585 

memory-error detection.  586 

In the first GLM, neurophysiological signals related to recall, confidence and 587 

feedback were assessed and convolved as separate regressors with respective onset 588 

times, such that the shared variance is encompassed in the residual variance of the 589 

model. The encoding-related regressors were excluded because of the statistical and 590 

hemodynamic overlap with the feedback-related regressors. Multicollinearity between 591 

convolved regressors was examined using the variance-inflation-factor index, 592 

assuming moderate multicollinearity for values > 5 and < 10, and high multicollinearity 593 

for a variance-inflation-factor > 10. To determine the brain regions associated with 594 

performance monitoring of memory errors, fMRI contrasts were calculated for 595 

hemodynamic responses upon failed recall (ErrorLowConfidence > CorrectHighConfidence) as 596 

implicit indication for a detected demand of better memory formation, the selection of 597 

recall uncertainty (low > high confidence) as discrete internal memory error evidence, 598 

and the presentation of memory error feedback (negative > positive) as external 599 

evidence. 600 

In the second GLM, encoding regressors were used together with regressors 601 

for recall and for confidence while the feedback-related regressors were excluded 602 

because of the redundancy and temporal overlap with encoding regressors. To ensure 603 

that participants were aware of required memory demands before successful re-604 

learning, the post-error SME was calculated between low-confident error trials which 605 

were later remembered with a high level of confidence and those error trials with 606 

subsequent failed recall and low confidence (ErrorLowConfidenceCorrectHighConfidence > 607 

ErrorLowConfidenceErrorLowConfidence).  608 
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In the 1-back localizer task, the univariate GLM analysis consisted of 609 

hemodynamic response functions convolved for faces and houses which were further 610 

differentiated into eight regressors based on four different signal detection theory trial 611 

types (hit, miss, correct rejection, false alarm), and denoising parameters as described 612 

in the section fMRI preprocessing. To determine which brain regions are 613 

systematically related to face-processing, a contrast on correct non-press trials 614 

(FaceCorrectRejection > HouseCorrectRejection) was calculated. The topography of significant 615 

clusters in FG was visually compared regarding its overlap with probabilistic 616 

cytoarchitectonic maps for right FG-2 and FG-4 regions (Eickhoff et al., 2005). 617 

Upon statistical testing of the group results in a second level GLM, contrasts 618 

maps were smoothed with an 8 mm kernel and a voxel-wise false-discovery rate 619 

threshold was applied, removing clusters with an extent of less than five continuous 620 

voxels (equivalent to clusters of at least 53.24 mm3).  621 

Multivariate cross-classification 622 

A key aim of the current study was to develop a quantitative proxy measure for 623 

stimulus-based attention as a link between error-driven demand detection and 624 

encoding success. For each participant, a multivariate model on face-processing was 625 

trained in the localizer task and later applied to memory-related epochs in FALT, such 626 

as memory recall, encoding and rehearsal (i.e., the intertrial interval). First, the 627 

univariate GLMs described in the previous sections were adapted for single-trial 628 

deconvolution according to the least-squares separate approach (Mumford et al., 629 

2012) to obtain a series of beta-maps. In this regard, all correct rejection face and 630 

house trials in the localizer task were determined and stimulus presentation of each 631 

trial was once defined as target event in an additional, independent GLM. The target 632 

trial was convolved with a hemodynamic response function as a separate regressor, 633 
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while controlling for all other events and denoising parameters such as in conventional 634 

GLM analyses. In case participants showed optimal performance in the localizer task 635 

(i.e., they correctly identified all repetitions and did not display false alarms) a total of 636 

70 single-trial (M = 69.13, SD = 2.29) beta-maps could be derived.  637 

Based on the univariate fMRI results in the localizer task, bilateral 638 

cytoarchitectonic probability masks for FG-4 showed a strong overlap with increased 639 

hemodynamic responses during face processing. After smoothing with a 6 mm full-640 

width at half-maximum kernel, deconvolved betaseries of voxels within the FG-4 mask 641 

were extracted and trials were labeled for five folds according to the presented run in 642 

the task. A balanced, probability-scaled linear support vector machine (C = 1) with a 643 

squared penalty function was trained on four of the five runs to predict whether trials 644 

from the left-out run were either faces or houses. Within the five-fold leave-one-run-645 

out cross-validation a standard scaler (M = 0, SD = 1) was fit to the four training runs 646 

and applied to the left-out run. Univariate feature selection was applied by maintaining 647 

only the beta-weights of the 14 voxels with the strongest positive ANOVA effects, to 648 

obtain results for participant-specific FFA voxels and to reach a feature-to-sample 649 

ration of approximately 1:5 before fitting the support vector machine. Feature selection 650 

was only based on the training samples, both during cross-validation and cross-651 

classification, to prevent leakage and overfitting. Decoding accuracies were evaluated 652 

by testing whether the average accuracies of the five runs per participant exceeded a 653 

chance level of 50 % with a one-sample t-test. Face and house trials were tested for 654 

equal decoding accuracies with a t-test for dependent samples to ensure that the FFA-655 

based face-processing model was balanced and did not prefer either of the two 656 

categories. 657 
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After leave-one-run-out cross-validated model evaluation, trials from all five 658 

folds were included in model training. A full model was fit on correct rejection trials of 659 

all localizer task runs of a participant with the same scaling procedure and feature 660 

selection as during cross-validation. The support vector machine was fit on the 14 661 

selected voxels of up to 70 correct rejection trials of all localizer runs of a participant, 662 

to be applied to the memory epochs for trials in FALT. Single-trial deconvolution and 663 

selection of FFA voxels was repeated for the 160 trials in FALT and the three memory-664 

relevant epochs of stimulus recall, encoding and rehearsal (ITI). The machine learning 665 

model for evaluating the strength of stimulus representations then predicted the 666 

presented class and estimated the probability of face-processing for each trial in each 667 

of the epochs. To evaluate the validity of the single-trial face processing model, the 668 

correspondence between the average probability the face-class and the absolute 669 

number of predicted face-class trials was controlled by significance tests for the 670 

Spearman correlation coefficient. To assess which other regions are potentially 671 

involved in allocating attention to the presented stimulus category, the classifiers 672 

single-trial decoding probability of FFA-based face-processing evidence was then fit 673 

to all other voxels in a whole-brain GLM analysis on the single-trial betaseries for each 674 

of the memory-relevant epochs (recall, encoding, rehearsal), respectively. The 675 

predicted face class-probability parameter was compared between different 676 

behaviorally-assessed trial types during stimulus recall, encoding and rehearsal, to 677 

determine whether the proxy measure for allocated stimulus-based attention is 678 

increased after memory errors and related to a higher likelihood of successful memory 679 

formation, as determined by later recall success. For each of the three memory 680 

epochs, in a linear mixed model the representation strength measure was fit to the 681 

regressors encoding demand and subsequent recall success, while restricting the 682 
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analysis to ErrorError, ErrorCorrect and CorrectCorrect trials, and controlling within-683 

participant dependencies by using participant as group factor. 684 

Data and code accessibility 685 

Behavioral and fMRI analyses were based on custom Python code within 686 

Jupyter Lab, using plotting functions from Matplotlib and Seaborn, numerical 687 

processing and statistical testing with Numpy, Scipy, Pandas and Statsmodels, and 688 

decoding tools from Scikitlearn and Nilearn (version 0.10.0; Abraham et al., 2014). 689 

Visualization of fMRI results was based on MRIcroGL (version 1.2.20220720b). The 690 

code used for behavioral and fMRI analyses, and the unthresholded statistical fMRI 691 

maps will be uploaded on respective public repositories upon publication of the 692 

manuscript. 693 
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Supplementary Tables 829 

Supplementary table 1 | Implicit memory error evidence. Significant clusters 830 

during failed recall (ErrorLowConfidence > CorrectHighConfidence) in the feedback-based 831 

association learning task (FALT) for voxels with a pFDR < .05 and clusters of at least 5 832 

continuous voxels according to automated anatomical labeling (AAL) atlas. Clusters 833 

without specified cluster size represent subclusters of above specified regions. 834 

Region 
 

X Y Z Peak statistic Cluster size 

Occipital Inf R 27 -90 -9 6.298 65112 
Lingual L -36 -85 -16 6.149  
Occipital Inf L -23 -96 -5 5.817  
Lingual L -10 -92 -16 5.780  
Frontal Inf Tri R 51 28 20 5.167 6995 
Frontal Inf Oper R 55 17 36 3.762  
unspecified in AAL -1 17 1 4.961 11957 
Caudate R 11 -2 14 4.797  
unspecified in AAL -18 -24 20 4.694  
unspecified in AAL 0 -37 5 4.583  
Fusiform L -29 -48 -9 4.909 2257 
Frontal Inf Tri L -45 28 23 4.867 6165 
Frontal Inf Tri L -51 22 29 4.675  
Precentral L -38 4 34 3.762  
Cingulum Mid R 5 22 40 4.299 3002 
Supp Motor Area L -7 19 45 3.910  
Frontal Sup Medial R 5 33 42 3.297  
Supp Motor Area R 9 15 56 3.090  
unspecified in AAL -23 -46 20 4.103 841 
unspecified in AAL -21 -57 25 3.627  
Cerebelum 10 L -23 -35 -42 3.928 883 
Cerebelum 4 5 L -25 -28 -31 3.451  
Temporal Pole Sup R 66 6 -1 3.818 191 
Supp Motor Area L -1 22 67 3.595 202 
Precentral R 18 -24 78 3.535 330 
Temporal Sup R 49 -8 -3 3.530 489 
Temporal Sup R 47 -6 -12 3.000  
unspecified in AAL 38 0 -14 3.496 308 
Hippocampus R 36 -19 -9 3.446 223 
Frontal Mid R 27 13 56 3.392 447 
Heschl R 51 -17 9 3.343 404 
Frontal Sup L -23 66 7 3.334 255 
unspecified in AAL 22 -32 53 3.322 95 
unspecified in AAL 14 -15 23 3.290 117 
Caudate R 20 -21 20 3.286 234 
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unspecified in AAL -1 50 51 3.266 63 
unspecified in AAL 29 -26 -1 3.266 117 
Paracentral Lobule R 3 -32 73 3.089 53 
Supp Motor Area R 9 8 69 3.083 63 
Calcarine L -14 -54 12 3.069 53 
Temporal Sup R 69 -13 7 3.009 63 
unspecified in AAL 27 -26 29 2.949 53 
Heschl L -45 -15 5 2.887 63 
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Supplementary table 2 | Internal memory error evidence. Increased hemodynamic 836 

responses for the selection of low compared to high recall certainty during confidence 837 

selection in the feedback-based association learning task (FALT), for voxels with a 838 

pFDR < .05 and clusters of at least 5 continuous voxels according to automated 839 

anatomical labeling (AAL) atlas. Clusters without specified cluster size represent 840 

subclusters of above specified regions. 841 

Region 
 

X Y Z Peak statistic Cluster size 

Frontal Mid R 36 48 20 5.774 33338 
Frontal Sup R 22 13 65 5.572  
Frontal Mid R 42 35 29 4.952  
Frontal Mid R 44 28 42 4.853  
Precuneus R 9 -70 45 5.291 18506 
Precuneus L -7 -68 49 5.056  
Precuneus R 5 -70 56 4.983  
Precuneus R 14 -61 29 4.779  
SupraMarginal R 55 -46 29 5.038 20955 
Parietal Inf R 51 -41 53 4.685  
Parietal Sup R 38 -61 56 4.397  
Parietal Inf R 47 -57 49 4.301  
Frontal Inf Tri L -45 28 27 4.933 13416 
Frontal Inf Tri L -34 24 29 4.137  
Frontal Mid L -38 55 12 3.951  
unspecified in AAL -38 59 1 3.762  
Cingulum Mid R 3 35 36 4.866 3652 
Supp Motor Area L -3 19 47 4.369  
Frontal Sup Medial R 3 41 51 2.857  
Temporal Mid R 69 -21 -3 4.571 5292 
Temporal Mid R 66 -30 -5 4.219  
Temporal Inf R 55 -30 -23 3.694  
Temporal Mid R 64 -50 -5 3.571  
Parietal Inf L -51 -43 49 4.541 9040 
Parietal Inf L -32 -74 49 4.480  
Parietal Inf L -36 -54 38 3.956  
Angular L -43 -61 47 3.636  
unspecified in AAL -25 -87 -45 3.835 489 
unspecified in AAL -36 -83 -45 2.906  
unspecified in AAL -5 -32 -16 3.776 170 
unspecified in AAL 0 -24 27 3.610 500 
Cingulum Mid R 9 -26 31 2.938  
Precuneus R 11 -37 3 3.579 383 
unspecified in AAL 0 -30 7 2.922  
Insula L -29 26 -5 3.481 468 
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Supp Motor Area L -12 6 67 3.439 1331 
Frontal Mid L -21 11 62 3.218  
unspecified in AAL 0 -13 -27 3.328 149 
Frontal Sup R 22 59 29 3.315 117 
unspecified in AAL 9 -26 -18 3.168 106 
unspecified in AAL -25 37 -25 3.151 138 
Frontal Sup R 20 70 3 3.052 63 
unspecified in AAL -23 -26 29 3.036 85 
Frontal Mid Orb L -18 50 -16 2.978 138 
unspecified in AAL -18 -52 27 2.916 74 
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Supplementary table 3 | External memory error evidence. Hemodynamic 843 

responses increased for negative compared to positive feedback in the feedback-844 

based association learning task (FALT), for voxels with a pFDR < .05 and clusters of at 845 

least 5 continuous voxels according to automated anatomical labeling (AAL) atlas. 846 

Clusters without specified cluster size represent subclusters of above specified 847 

regions. 848 

Region 
 

X Y Z Peak statistic Cluster size 

Occipital Mid R 36 -76 34 7.618 187085 
Parietal Inf L -34 -54 45 7.360  
Occipital Mid L -27 -70 25 6.818  
Parietal Inf L -27 -79 42 6.782  
Insula R 31 26 -1 6.958 33605 
Frontal Sup R 29 4 60 6.312  
Frontal Inf Oper R 51 11 29 5.522  
Precentral R 27 -4 47 5.077  
Insula L -29 24 1 6.881 60416 
Frontal Inf Tri L -49 26 27 6.806  
Supp Motor Area R 5 17 51 6.804  
Frontal Mid L -25 0 58 6.694  
Cerebelum 6 R 11 -74 -25 6.314 13459 
Cerebelum 7b L -29 -70 -47 6.020  
Cerebelum Crus1 L -7 -74 -25 5.194  
Cerebelum Crus2 R 5 -81 -36 4.717  
Cerebelum 9 R 9 -52 -51 5.677 2214 
Cerebelum 8 R 29 -72 -49 5.070 3322 
unspecified in AAL -1 -32 -25 3.799 819 
ParaHippocampal L -29 -43 -7 3.778 393 
unspecified in AAL -3 6 -42 3.546 85 
Cerebelum 8 R 31 -41 -47 3.468 170 
Lingual R 5 -85 -7 3.170 181 
Frontal Sup Orb R 25 52 -7 3.151 351 
unspecified in AAL 25 37 -25 3.080 117 
unspecified in AAL 5 -6 -3 3.016 106 
unspecified in AAL 27 33 -27 2.913 53 
unspecified in AAL -25 33 -27 2.890 223 
Fusiform R 36 -15 -36 2.870 340 
Fusiform R 33 -6 -34 2.727  
unspecified in AAL -16 8 9 2.775 223 
Fusiform L -40 -32 -20 2.619 95 
Temporal Sup R 44 -28 3 2.564 85 
Frontal Mid Orb L -38 44 -3 2.549 95 
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Supplementary table 4 | The post-error subsequent memory effect. The table 850 

shows regions with increased hemodynamic responses for later recall success during 851 

the encoding epochs which followed memory errors 852 

(ErrorLowConfidenceCorrectHighConfidence > ErrorLowConfidenceErrorLowConfidence), for voxels with 853 

a pFDR < .05 and clusters of at least 5 continuous voxels according to automated 854 

anatomical labeling (AAL) atlas. Clusters without specified cluster size represent 855 

subclusters of above specified regions. 856 

Region 
 

X Y Z Peak statistic Cluster size 

Supp Motor Area L -3 0 71 5.370 2299 
Supp Motor Area L -10 4 73 5.149  
Supp Motor Area L -1 13 69 4.387  
Occipital Mid L -27 -79 40 4.374 191 
Frontal Inf Tri L -49 28 12 4.323 372 
Frontal Inf Tri L -56 24 23 3.799  
Fusiform L -40 -54 -18 4.294 1224 
Temporal Inf L -49 -50 -18 4.192  
unspecified in AAL -62 -63 -1 4.293 692 
Temporal Mid L -43 -74 20 4.250 202 
Frontal Inf Oper L -56 8 9 4.040 628 
Frontal Inf Tri L -54 15 5 3.845  
Occipital Inf R 47 -72 -14 3.991 340 
Temporal Inf R 51 -65 -12 3.912  
unspecified in AAL -51 26 -20 3.979 106 
unspecified in AAL -47 -35 -1 3.945 63 
Cerebelum Crus1 R 49 -61 -25 3.943 170 
Temporal Pole Sup L -27 13 -27 3.855 53 
Precentral L -54 0 49 3.830 298 
Fusiform L -25 -57 -16 3.748 74 
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Supplementary table 5 | Face-selective regions. The table displays regions found 858 

to show increased hemodynamic responses for faces compared to houses in the 1-859 

back localizer task, for voxels with a pFDR < .05 and clusters of at least 5 continuous 860 

voxels according to automated anatomical labeling (AAL) atlas. Clusters without 861 

specified cluster size represent subclusters of above specified regions. 862 

Region 
 

X Y Z Peak statistic Cluster size 

Precuneus R 3 -65 38 6.401 22424 
Precuneus R 3 -52 20 5.282  
Calcarine L -14 -79 12 4.483  
Cingulum Post L -7 -46 31 4.447  
Cerebelum 6 R 44 -46 -27 5.477 3726 
Temporal Mid R 53 -65 5 5.246 18357 
Temporal Mid R 53 -57 7 5.129  
Temporal Mid R 51 -39 5 4.482  
unspecified in AAL 44 -41 16 4.370  
Frontal Mid R 22 28 40 5.137 4099 
Hippocampus R 18 -6 -16 5.115 1054 
Frontal Med Orb L -3 46 -14 5.036 25597 
Rectus R 3 44 -18 4.945  
Frontal Med Orb R 0 52 -12 4.921  
Frontal Sup L -27 66 9 4.582  
Temporal Pole Sup R 40 19 -31 4.873 5717 
Temporal Pole Sup R 31 8 -27 4.565  
unspecified in AAL 31 8 -18 4.321  
Temporal Pole Mid R 51 13 -34 3.617  
Temporal Pole Mid L -45 17 -29 4.720 5206 
Temporal Pole Sup L -32 8 -25 4.486  
Amygdala L -18 -4 -14 3.924  
unspecified in AAL -21 0 -7 3.367  
Fusiform L -40 -52 -23 4.683 1533 
Temporal Mid L -62 -10 -12 4.307 2374 
Temporal Sup L -45 -15 -12 4.125  
Temporal Mid L -54 -15 -9 4.101  
Temporal Mid L -54 -4 -18 2.941  
Frontal Inf Tri R 38 28 12 4.048 340 
Temporal Mid R 51 -6 -18 4.036 3162 
Temporal Sup R 66 -8 -9 3.94  
Temporal Sup R 55 -8 -7 3.638  
Temporal Mid R 64 -2 -18 3.282  
Cingulum Mid L -1 -19 40 3.966 1693 
Cingulum Mid L 0 -4 38 3.156  
unspecified in AAL 0 6 -12 3.956 1341 
unspecified in AAL -51 -74 12 3.861 4525 
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Temporal Mid L -49 -59 9 3.619  
Angular L -49 -68 25 3.312  
unspecified in AAL -51 -70 38 3.160  
Cerebelum Crus2 L -7 -85 -40 3.816 585 
Parietal Sup R 20 -52 62 3.689 266 
unspecified in AAL 16 -43 58 3.111  
Precentral R 27 -17 78 3.642 234 
unspecified in AAL 33 -21 73 3.091  
SupraMarginal R 58 -28 20 3.635 947 
Cerebelum Crus1 R 49 -74 -38 3.575 298 
Cerebelum Crus1 R 40 -79 -36 2.911  
unspecified in AAL -25 -50 16 3.568 415 
unspecified in AAL -23 -41 18 3.013  
Insula L -45 8 -5 3.561 681 
Frontal Inf Orb L -45 17 -12 3.372  
Postcentral L -43 -24 29 3.525 181 
Frontal Mid L -27 26 58 3.502 2587 
Frontal Mid L -25 35 49 3.349  
Frontal Mid L -21 24 51 3.306  
Frontal Sup L -14 24 65 3.204  
unspecified in AAL -21 41 7 3.475 436 
Precentral L -23 -24 80 3.454 170 
Postcentral L -25 -41 60 3.429 212 
Thalamus R 11 -30 9 3.400 191 
Frontal Sup L -18 13 67 3.199 266 
Supp Motor Area R 7 -15 58 3.197 53 
Hippocampus L -14 -39 5 3.189 63 
Parietal Sup L -23 -48 76 3.146 212 
unspecified in AAL -62 -17 -29 3.143 74 
Cerebelum Crus1 R 51 -61 -38 3.114 127 
unspecified in AAL -7 -6 12 3.110 74 
Frontal Mid R 25 17 56 3.074 95 
Temporal Mid R 69 -37 1 3.033 63 
Precentral R 42 -13 67 3.024 85 
Frontal Inf Orb L -36 28 -18 2.996 74 
unspecified in AAL -34 -61 9 2.993 63 
Frontal Inf Orb L -23 28 -16 2.987 95 
Cingulum Ant R 3 41 5 2.965 223 
Cerebelum 7b R 42 -59 -49 2.857 63 
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Supplementary table 6 | House-selective regions. The table shows which regions 864 

displayed increased hemodynamic responses for houses compared to faces in the 1-865 

back localizer task, for voxels with a pFDR < .05 and clusters of at least 5 continuous 866 

voxels according to automated anatomical labeling (AAL) atlas. Clusters without 867 

specified cluster size represent subclusters of above specified regions. 868 

Region 
 

X Y Z Peak statistic Cluster size 

Lingual L -29 -52 -5 7.019 111399 
Fusiform R 29 -52 -3 6.809  
Occipital Mid R 36 -85 16 6.527  
Occipital Mid L -32 -90 12 6.445  
Cerebelum 7b L -29 -74 -51 4.298 1086 
unspecified in AAL 7 -68 -58 4.064 564 
Precentral L -51 4 40 3.937 1788 
Frontal Inf Orb L -29 28 -7 3.767 244 
Cerebelum 8 R 27 -72 -51 3.759 457 
Temporal Inf R 55 -50 -9 3.577 468 
unspecified in AAL 3 -8 -25 3.433 127 
unspecified in AAL -5 -37 -25 3.371 138 
unspecified in AAL -16 30 -31 3.160 74 
Cerebelum Crus2 R 5 -76 -36 3.080 63 
Temporal Inf R 49 -61 -9 3.025 95 
Cerebelum Crus1 L -56 -57 -34 3.015 74 
Supp Motor Area R 9 15 47 2.997 53 
Parietal Inf R 44 -37 53 2.879 53 
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Supplementary table 7 | Recall-related face processing regions. Significant 870 

clusters related to higher evidence for face-processing during single-trial recall epochs 871 

in the feedback-based association learning task (FALT), for voxels with a pFDR < .05 872 

and clusters of at least 5 continuous voxels according to automated anatomical 873 

labeling (AAL) atlas. Clusters without specified cluster size represent subclusters of 874 

above specified regions. 875 

Region 
 

X Y Z Peak statistic Cluster size 

Cuneus R 14 -96 7 5.563 89794 
Occipital Inf L -23 -92 -5 5.008  
Occipital Inf R 31 -85 -16 4.986  
unspecified in AAL 38 -92 -16 4.944  
Cerebelum 4 5 R 7 -46 -16 4.813 2683 
Cerebelum 4 5 L -5 -52 -14 3.761  
Cerebelum 4 5 L -7 -48 -3 3.498  
Supp Motor Area R 3 17 49 4.805 3481 
Supp Motor Area L -7 17 49 3.602  
unspecified in AAL 25 37 -25 4.403 745 
unspecified in AAL 20 30 -29 3.949  
Frontal Inf Oper L -38 2 27 4.303 3854 
Frontal Inf Tri L -43 17 27 3.529  
Frontal Inf Oper L -54 22 31 3.411  
Angular R 27 -59 42 4.262 3907 
Parietal Sup R 20 -68 47 3.519  
Parietal Sup R 31 -72 53 3.478  
Parietal Sup R 29 -63 51 3.167  
Cerebelum Crus1 L -12 -68 -29 4.012 1299 
unspecified in AAL -14 -54 -36 3.174  
Insula R 29 24 -1 3.947 500 
unspecified in AAL 18 8 29 3.934 287 
Cerebelum 10 R 22 -37 -47 3.869 1181 
unspecified in AAL 11 4 1 3.854 255 
Parietal Inf L -38 -54 42 3.852 2108 
Thalamus L -14 -13 5 3.818 181 
Cerebelum 8 R 33 -65 -56 3.743 1181 
unspecified in AAL -5 -26 29 3.743 170 
Paracentral Lobule R 9 -35 65 3.687 117 
Pallidum L -18 -2 -3 3.623 181 
unspecified in AAL -10 -2 25 3.598 436 
Cingulum Ant L -5 4 27 3.073  
Cerebelum 10 L -25 -35 -40 3.576 851 
Insula L -32 24 -1 3.530 404 
unspecified in AAL 36 17 20 3.524 255 
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Cerebelum 8 L -27 -68 -53 3.517 383 
unspecified in AAL -23 -32 14 3.404 85 
unspecified in AAL -27 -32 1 3.347 255 
unspecified in AAL 5 -2 23 3.341 53 
Caudate L -18 -19 23 3.273 74 
unspecified in AAL 16 -30 -3 3.225 543 
unspecified in AAL 5 -30 -1 3.103  
ParaHippocampal R 36 -13 -29 3.207 223 
unspecified in AAL 25 -52 -34 3.175 63 
Postcentral L -21 -50 53 3.151 53 
unspecified in AAL -16 28 -9 3.128 53 
Frontal Inf Tri R 53 33 25 3.077 340 
Caudate L -7 8 1 3.014 85 
Precuneus R 16 -61 27 3.000 85 
unspecified in AAL -1 -30 -18 2.984 53 
unspecified in AAL 25 -32 31 2.975 85 
Parietal Sup L -21 -63 53 2.975 149 
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Supplementary table 8 | Encoding-related face processing regions. Significant 877 

clusters related to higher evidence for face-processing during single-trial encoding 878 

epochs in the feedback-based association learning task (FALT), for voxels with a pFDR 879 

< .05 and clusters of at least 5 continuous voxels according to automated anatomical 880 

labeling (AAL) atlas. Clusters without specified cluster size represent subclusters of 881 

above specified regions. 882 

Region 
 

X Y Z Peak statistic Cluster 
size 

Precentral L -38 -4 53 6.245 11915 
Frontal Inf Tri L -43 13 25 4.556  
Frontal Inf Tri L -49 33 16 2.928  
Vermis 9 -1 -57 -38 6.080 121834 
Occipital Mid L -10 -103 1 5.575  
Occipital Inf R 38 -70 -9 5.345  
Cerebelum 6 L -40 -52 -25 5.290  
Supp Motor Area R 5 13 47 5.240 4940 
Supp Motor Area L -5 6 60 3.700  
Parietal Sup R 29 -72 51 4.614 17643 
unspecified in AAL 31 -50 36 4.523  
Occipital Mid R 36 -68 25 4.214  
Angular R 25 -63 47 4.153  
Parietal Inf L -34 -50 51 4.301 16504 
Parietal Inf L -38 -54 42 4.238  
Parietal Sup L -27 -61 45 4.154  
Parietal Sup L -36 -63 53 4.016  
unspecified in AAL 25 35 -23 4.080 1341 
Fusiform R 40 -8 -34 3.949 1235 
Cerebelum 9 R 20 -39 -47 3.802 287 
unspecified in AAL -27 35 -25 3.767 383 
Temporal Sup R 44 -35 3 3.656 425 
Insula L -34 17 -3 3.517 873 
Frontal Inf Tri L -32 30 1 3.264  
Cerebelum 8 L -25 -70 -49 3.506 734 
unspecified in AAL 25 -26 -1 3.479 617 
Frontal Inf Tri R 49 30 16 3.465 2683 
Frontal Inf Tri R 42 15 23 3.159  
unspecified in AAL 36 11 20 3.139  
Paracentral Lobule R 9 -39 65 3.386 287 
Cerebelum 9 L -18 -39 -47 3.368 138 
unspecified in AAL 16 -4 -9 3.196 106 
Temporal Pole Sup L -25 6 -25 3.195 276 
Lingual R 22 -50 -1 3.168 117 
Thalamus R 16 -15 14 3.146 223 
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unspecified in AAL -5 -46 -23 3.126 138 
Hippocampus L -14 -6 -14 3.114 85 
Precuneus L -7 -79 47 3.073 159 
unspecified in AAL -40 -21 -42 3.006 53 
Supp Motor Area R 5 -19 53 2.986 63 
Calcarine R 16 -72 9 2.958 170 
unspecified in AAL 29 26 -3 2.901 212 
Frontal Mid R 38 -2 58 2.796 95 
Paracentral Lobule L -1 -35 62 2.730 85 
unspecified in AAL 5 6 -31 2.724 53 
unspecified in AAL -5 -30 27 2.709 53 
Precentral R 33 -2 45 2.658 63 
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Supplementary table 9 | Rehearsal-related face processing regions. Significant 884 

clusters related to higher evidence for face-processing during single-trial fixation 885 

epochs, which may have been used by the participants for stimulus rehearsal in the 886 

feedback-based association learning task (FALT), for voxels with a pFDR < .05 and 887 

clusters of at least 5 continuous voxels according to automated anatomical labeling 888 

(AAL) atlas. Clusters without specified cluster size represent subclusters of above 889 

specified regions. 890 

Region 
 

X Y Z Peak statistic Cluster size 

Cerebelum 6 L -36 -57 -23 5.999 129266 
Occipital Inf R 36 -70 -9 5.752  
unspecified in AAL -7 -107 5 5.483  
Occipital Mid L -16 -96 3 5.119  
Postcentral R 11 -37 69 4.749 1022 
Postcentral R 18 -32 73 3.146  
Paracentral Lobule L -1 -35 60 2.917  
Cerebelum 8 R 27 -70 -51 4.281 2236 
Cerebelum 8 R 29 -59 -51 3.477  
Parietal Sup R 29 -65 56 4.242 15386 
Angular R 25 -61 47 4.230  
Parietal Sup R 31 -70 56 4.220  
Parietal Sup R 22 -65 58 4.137  
Frontal Inf Oper L -38 8 27 3.903 2651 
Frontal Inf Tri L -40 19 29 3.558  
Precentral L -36 -4 58 3.891 2491 
Precentral L -40 -2 51 3.794  
Frontal Sup L -21 -2 47 3.546  
Frontal Mid L -27 2 51 2.937  
Parietal Sup L -18 -63 53 3.886 15056 
Parietal Sup L -34 -65 53 3.784  
Parietal Sup L -27 -68 47 3.765  
Parietal Inf L -34 -54 51 3.672  
Postcentral L -21 -48 56 3.869 181 
unspecified in AAL -23 39 -27 3.793 255 
unspecified in AAL -23 -30 9 3.714 1405 
unspecified in AAL -32 -30 7 3.456  
Thalamus L -10 -13 9 3.452  
Cerebelum 8 L -29 -70 -51 3.690 1213 
Frontal Sup L -12 11 47 3.672 351 
Supp Motor Area L -1 11 56 3.620 702 
unspecified in AAL -16 -39 65 3.592 276 
Calcarine L -3 -72 7 3.580 819 
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Frontal Mid R 38 -2 58 3.497 202 
Frontal Inf Oper R 42 13 25 3.477 873 
ParaHippocampal L -18 4 -25 3.475 543 
Fusiform R 33 -4 -34 3.466 1288 
Fusiform R 40 -10 -31 3.364  
Temporal Inf R 62 -39 -23 3.464 212 
Supp Motor Area R 14 0 62 3.419 149 
Vermis 3 5 -43 -18 3.365 447 
unspecified in AAL 3 2 -14 3.326 319 
unspecified in AAL -1 -2 -7 2.862  
Hippocampus L -16 -6 -14 3.276 468 
unspecified in AAL 25 -15 36 3.229 106 
Occipital Sup L -10 -83 47 3.223 170 
unspecified in AAL 5 -28 -3 3.069 149 
Cerebelum 10 L -23 -41 -42 3.050 266 
Precuneus L -12 -52 71 2.994 149 
Amygdala R 20 0 -12 2.992 181 
Calcarine R 20 -52 3 2.990 202 
unspecified in AAL -29 -28 -47 2.875 74 
unspecified in AAL -49 -26 65 2.854 53 
Thalamus L -7 -19 18 2.831 63 
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Supplementary table 10 | Recall-related face representation strength. Mixed 892 

linear model regression results fit to the probability-scaled likelihood of face-893 

processing during deconvolved single-trial recall epochs during the feedback-based 894 

association learning task (FALT).  895 

Model: MixedLM Dependent variable Face Probability (Recall) 

Number of observations: 3183 Method:  REML 

Number of groups: 28 Scale:  0.0480 

Minimal group size: 101 Log-Likelihood:  248.0065 

Maximal group size: 120 Converged: Yes   

Mean group size: 113.7      

 Coefficient Standard error Z p [0.025 0.975] 

Intercept 0.664 0.030 22.235 <0.001 0.606 0.723 

Encoding demand 0.032 0.005 6.894 <0.001 0.023 0.041 

Subsequent recall success 0.011 0.006 1.922 0.055 -0.000 0.022 

Group variable 0.024 0.031 - - - - 
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Supplementary table 11 | Encoding-related face representation strength. Mixed 897 

linear model regression results fit to the probability-scaled likelihood of face-898 

processing during deconvolved single-trial encoding epochs. 899 

Model: MixedLM Dependent variable Face Probability (Encoding) 

Number of observations: 3183 Method:  REML 

Number of groups: 28 Scale:  0.0654 

Minimal group size: 101 Log-Likelihood:  -235.6007 

Maximal group size: 120 Converged: Yes   

Mean group size: 113.7      

 Coefficient Standard error z p [0.025 0.975] 

Intercept 0.435 0.026 16.423 <0.001 0.383 0.487 

Encoding demand 0.039 0.005 7.176 <0.001 0.028 0.049 

Subsequent recall success 0.015 0.007 2.254 0.024 0.002 0.028 

Group variable 0.019 0.021 - - - - 

  900 
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Supplementary table 12 | Rehearsal-related face representation strength. Mixed 901 

linear model regression results fit to the probability-scaled likelihood of face-902 

processing during deconvolved single-trial rehearsal epochs during the presentation 903 

of the fixation cross in the feedback-based association learning task (FALT). 904 

Model: MixedLM Dependent variable Face Probability (Rehearsal) 

Number of observations: 3183 Method:  REML 

Number of groups: 28 Scale:  0.0382 

Minimal group size: 101 Log-Likelihood:  606.6500 

Maximal group size: 120 Converged: Yes   

Mean group size: 113.7      

 Coefficient Standard error z p [0.025 0.975] 

Intercept 0.244 0.031 7.752 <0.001 0.182 0.305 

Encoding demand 0.006 0.004 1.571 0.116 -0.002 0.015 

Subsequent recall success -0.002 0.005 -0.343 0.732 -0.012 0.008 

Group variable 0.027 0.038 - - - - 

  905 
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Supplementary Methods 906 

MRI data preprocessing 907 

Results included in this manuscript come from preprocessing performed using 908 

fMRIPrep 23.2.2 (Esteban et al. (2019); Esteban et al. (2018); RRID:SCR_016216), 909 

which is based on Nipype 1.8.6 (K. Gorgolewski et al. (2011); K. J. Gorgolewski et al. 910 

(2018); RRID:SCR_002502). 911 

Preprocessing of B0 inhomogeneity mappings 912 

A total of 1 fieldmaps were found available within the input BIDS structure for 913 

this particular subject. A B0 nonuniformity map (or fieldmap) was estimated from the 914 

phase-drift map(s) measure with two consecutive GRE (gradient-recalled echo) 915 

acquisitions. The corresponding phase-map(s) were phase-unwrapped with prelude 916 

(FSL None). 917 

Anatomical data preprocessing 918 

A total of 1 T1-weighted (T1w) images were found within the input BIDS 919 

dataset. The T1w image was corrected for intensity non-uniformity (INU) with 920 

N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.5.0 (Avants et 921 

al. 2008, RRID:SCR_004757), and used as T1w-reference throughout the workflow. 922 

The T1w-reference was then skull-stripped with a Nipype implementation of the 923 

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target 924 

template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) 925 

and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 926 

(version unknown), RRID:SCR_002823, Zhang, Brady, and Smith 2001). Volume-927 

based spatial normalization to one standard space (MNI152NLin2009cAsym) was 928 

performed through nonlinear registration with antsRegistration (ANTs 2.5.0), using 929 

brain-extracted versions of both T1w reference and the T1w template. The following 930 
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template was were selected for spatial normalization and accessed with TemplateFlow 931 

(23.1.0, Ciric et al. 2022): ICBM 152 Nonlinear Asymmetrical template version 2009c 932 

[Fonov et al. (2009), RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym]. 933 

Functional data preprocessing 934 

For each of the 3 BOLD runs found per subject (across all tasks and sessions), 935 

the following preprocessing was performed. First, a reference volume was generated, 936 

using a custom methodology of fMRIPrep, for use in head motion correction. Head-937 

motion parameters with respect to the BOLD reference (transformation matrices, and 938 

six corresponding rotation and translation parameters) are estimated before any 939 

spatiotemporal filtering using mcflirt (FSL , Jenkinson et al. 2002). The estimated 940 

fieldmap was then aligned with rigid-registration to the target EPI (echo-planar 941 

imaging) reference run. The field coefficients were mapped on to the reference EPI 942 

using the transform. The BOLD reference was then co-registered to the T1w reference 943 

using mri_coreg (FreeSurfer) followed by flirt (FSL , Jenkinson and Smith 2001) with 944 

the boundary-based registration (Greve and Fischl 2009) cost-function. Co-945 

registration was configured with six degrees of freedom. Several confounding time-946 

series were calculated based on the preprocessed BOLD: framewise displacement 947 

(FD), DVARS and three region-wise global signals. FD was computed using two 948 

formulations following Power (absolute sum of relative motions, Power et al. (2014)) 949 

and Jenkinson (relative root mean square displacement between affines, Jenkinson 950 

et al. (2002)). FD and DVARS are calculated for each functional run, both using their 951 

implementations in Nipype (following the definitions by Power et al. 2014). The three 952 

global signals are extracted within the CSF, the WM, and the whole-brain masks. 953 

Additionally, a set of physiological regressors were extracted to allow for component-954 

based noise correction (CompCor, Behzadi et al. 2007). Principal components are 955 
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estimated after high-pass filtering the preprocessed BOLD time-series (using a 956 

discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal 957 

(tCompCor) and anatomical (aCompCor). tCompCor components are then calculated 958 

from the top 2% variable voxels within the brain mask. For aCompCor, three 959 

probabilistic masks (CSF, WM and combined CSF+WM) are generated in anatomical 960 

space. The implementation differs from that of Behzadi et al. in that instead of eroding 961 

the masks by 2 pixels on BOLD space, a mask of pixels that likely contain a volume 962 

fraction of GM is subtracted from the aCompCor masks. This mask is obtained by 963 

thresholding the corresponding partial volume map at 0.05, and it ensures 964 

components are not extracted from voxels containing a minimal fraction of GM. Finally, 965 

these masks are resampled into BOLD space and binarized by thresholding at 0.99 966 

(as in the original implementation). Components are also calculated separately within 967 

the WM and CSF masks. For each CompCor decomposition, the k components with 968 

the largest singular values are retained, such that the retained components’ time 969 

series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, 970 

WM, combined, or temporal). The remaining components are dropped from 971 

consideration. The head-motion estimates calculated in the correction step were also 972 

placed within the corresponding confounds file. The confound time series derived from 973 

head motion estimates and global signals were expanded with the inclusion of 974 

temporal derivatives and quadratic terms for each (Satterthwaite et al. 2013). Frames 975 

that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated 976 

as motion outliers. Additional nuisance timeseries are calculated by means of principal 977 

components analysis of the signal found within a thin band (crown) of voxels around 978 

the edge of the brain, as proposed by (Patriat, Reynolds, and Birn 2017). All 979 

resamplings can be performed with a single interpolation step by composing all the 980 
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pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion 981 

correction when available, and co-registrations to anatomical and output spaces). 982 

Gridded (volumetric) resamplings were performed using nitransforms, configured with 983 

cubic B-spline interpolation. 984 

Many internal operations of fMRIPrep use Nilearn 0.10.2 (Abraham et al. 2014, 985 

RRID:SCR_001362), mostly within the functional processing workflow. For more 986 

details of the pipeline, see the section corresponding to workflows in fMRIPrep’s 987 

documentation. 988 

Copyright Waiver 989 

The above boilerplate text was automatically generated by fMRIPrep with the 990 

express intention that users should copy and paste this text into their manuscripts 991 

unchanged. It is released under the CC0 license. 992 
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